(本小題滿分14分)
某商品近一個月內(nèi)(30天)預計日銷量y=f(t)(件)與時間t(天)的關系如圖1所示,單價y=g(t)(萬元/件)與時間t(天)的函數(shù)關系如圖2所示,(t為整數(shù))
         
圖1                                      圖2
(1)試寫出f(t)與g(t)的解析式;(6分) 
(2)求此商品日銷售額的最大值?(8分)

(1)f(t)="35-t" (0≤t≤30,t?Z),……2分 ,g(t)=6分
(2)設日銷售額L(t)是天數(shù)t的函數(shù),則有
L(t)=" f(t)" ·g(t)=                ……9分
當0≤t≤20時,L(t)=,當t=11或12時,L(t)最大值為138萬元。
當20<t≤30時,L(t)=在(20,30]是減函數(shù),故L(t)<L(20)=120萬元,故0≤t≤30時,當t=11或12時,L(t)最大值為138萬元。                ……13分
答:第11天與第12天的日銷售額最大,最大值為138萬元。              ……14分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案