【題目】定義在R上的偶函數(shù)fx)滿足fe+x)=fex),且f0)=0,當x∈(0e]時,fx)=lnx已知方程在區(qū)間[e3e]上所有的實數(shù)根之和為3ea,將函數(shù)的圖象向右平移a個單位長度,得到函數(shù)hx)的圖象,,則h7)=_____.

【答案】

【解析】

根據(jù)題意可知函數(shù)fx)是一個周期為2e的偶函數(shù),即可作出函數(shù)fx)在[e,3e]上的圖象,由方程的根與兩函數(shù)圖象交點的橫坐標的關系可求得的值,再利用二倍角公式化簡函數(shù),然后根據(jù)平移法則即可求得,從而求得

因為fe+x)=fex),所以fx)關于xe對稱,又因為偶函數(shù)fx),

所以fx)的周期為2e.

x∈(0,e]時,fx)=lnx,于是可作出函數(shù)fx)在[e,3e]上的圖象如圖所示,

方程的實數(shù)根是函數(shù)yfx)與函數(shù)的交點的橫坐標,

由圖象的對稱性可知,兩個函數(shù)在[e3e]上有4個交點,且4個交點的橫坐標之和為4e,所以4e3ea,故a,

因為,

所以

.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知定點,,直線相交于點,且它們的斜率之積為,記動點的軌跡為曲線

(1)求曲線的方程;

(2)過點的直線與曲線交于兩點,是否存在定點,使得直線斜率之積為定值,若存在,求出坐標;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過點,傾斜角為,在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

2)若直線與曲線相交于兩點,設點,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中,隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.

(1)請根據(jù)以上調查結果將下面列聯(lián)表補充完整,并判斷能否有的把握認為“戀家在家里感到最幸福”與城市有關

在家里最幸福

在其它場所最幸福

合計

洛陽高中生

上海高中生

合計

(2) 從被調查的不“戀家”的上海學生中,用分層抽樣的方法選出4人接受進一步調查,從被選出的4 人中隨機抽取2人到洛陽交流學習,求這2人中含有在“個人空間”感到幸福的學生的概率.

,其中d.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據(jù)自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規(guī)劃,又能發(fā)揮學科優(yōu)勢,進而在高考中獲得更好的成績和實現(xiàn)自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數(shù)、外三科必學內(nèi)容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調查,依據(jù)調查結果制作出如下兩個等高堆積條形圖:根據(jù)這兩幅圖中的信息,下列哪個統(tǒng)計結論是不正確的(

A.樣本中的女生數(shù)量多于男生數(shù)量

B.樣本中有學物理意愿的學生數(shù)量多于有學歷史意愿的學生數(shù)量

C.樣本中的男生偏愛物理

D.樣本中的女生偏愛歷史

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角,,的對邊分別是,,,且滿足:.

)求角的大。

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱柱的底面是邊長為的菱形,且,平面,于點,點的中點.

1)求證:平面

2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作.其中的一道題“今有木,方三尺,高三尺,欲方五寸作枕一枚.問:得幾何?”意思是:“有一塊棱長為3尺的正方體方木,要把它作成邊長為5寸的正方體枕頭,可作多少個?”現(xiàn)有這樣的一個正方體木料,其外周已涂上油漆,則從切割后的正方體枕頭中任取一塊,恰有一面涂上油漆的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于數(shù)列,定義變換”:將數(shù)列變換成數(shù)列,其中,且,這種變換記作.繼續(xù)對數(shù)列進行變換,得到數(shù)列依此類推,當?shù)玫降臄?shù)列各項均為時變換結束.

(1)試問經(jīng)過不斷的變換能否結束?若能,請依次寫出經(jīng)過變換得到的各數(shù)列;若不能,說明理由;

(2)求經(jīng)過有限次變換后能夠結束的充要條件;

(3)證明:一定能經(jīng)過有限次變換后結束.

查看答案和解析>>

同步練習冊答案