【題目】已知直線過點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),的值.

【答案】1)直線的參數(shù)方程為為參數(shù)),曲線的直角坐標(biāo)方程為.2

【解析】

1)直接利用參數(shù)方程和極坐標(biāo)方程公式化簡得到答案.

2)將參數(shù)方程代入曲線的直角坐標(biāo)方程,利用韋達(dá)定理得到,再計(jì)算,,代入計(jì)算得到答案.

1)∵直線過點(diǎn),傾斜角為∴可設(shè)直線的參數(shù)方程為為參數(shù)),

∵曲線的方程為

,,,

∴曲線的直角坐標(biāo)方程為.

2)由(1)知,直線的參數(shù)方程為為參數(shù)),

兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,

的參數(shù)方程代入到曲線的直角坐標(biāo)方程為中,

化簡得,

,,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

1)解關(guān)于的不等式;

2)若不等式對(duì)任意實(shí)數(shù)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,分別為內(nèi)角,的對(duì)邊,若同時(shí)滿足下列四個(gè)條件中的三個(gè):①;②;③;④.

1)滿足有解三角形的序號(hào)組合有哪些?

2)在(1)所有組合中任選一組,并求對(duì)應(yīng)的面積.

(若所選條件出現(xiàn)多種可能,則按計(jì)算的第一種可能計(jì)分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且交于兩點(diǎn),已知點(diǎn)的極坐標(biāo)為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程,并求的值;

2)若矩形內(nèi)接于曲線且四邊與坐標(biāo)軸平行,求其周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點(diǎn),傾斜角為,在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

2)若直線與曲線相交于兩點(diǎn),設(shè)點(diǎn),的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)其中

1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)若對(duì)于恒成立,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為

1)求三棱錐的體積;

2)若的中點(diǎn),求異面直線所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, 分別是線段的中點(diǎn).

(1)求異面直線所成角的大。

(2)求直線與平面所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的棱長為1,線段上有兩個(gè)動(dòng)點(diǎn).,且,則下列結(jié)論中錯(cuò)誤的是(

A.;

B.三棱錐體積是定值;

C.二面角的平面角大小是定值;

D.與平面所成角等于與平面所成角;

查看答案和解析>>

同步練習(xí)冊(cè)答案