精英家教網 > 高中數學 > 題目詳情

【題目】如圖,正方形的棱長為1,線段上有兩個動點.,且,則下列結論中錯誤的是(

A.;

B.三棱錐體積是定值;

C.二面角的平面角大小是定值;

D.與平面所成角等于與平面所成角;

【答案】D

【解析】

對四個選項逐一分析,由此確定結論錯誤的選項.

連接.根據正方體的幾何性質可知,所以平面,故平面.

對于A選項,由于平面,所以,故A選項結論正確.

對于B選項.由于三角形的面積是定值,到平面的距離是定值,所以三棱錐的體積是定值,故B選項結論正確.

對于C選項,二面角等于二面角,所以二面角的平面角大小是定值,故C選項結論正確.

對于D選項,由于平面.所以分別是與平面所成角、與平面所成角,由于,所以這兩個角不相等,故D選項結論錯誤.

故選:D

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知直線過點,傾斜角為,在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的方程為.

1)寫出直線的參數方程和曲線的直角坐標方程;

2)若直線與曲線相交于兩點,設點,的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)年的純利潤為萬元,因設備老化等原因,企業(yè)的生產能力將逐年下降,若不進行技術改造,預測從今年(年)起每年比上一年純利潤減少萬元,今年初該企業(yè)一次性投入資金萬元進行技術改造,預計在未扣除技術改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數).

1)設從今年起的前年,若該企業(yè)不進行技術改造的累計純利潤為萬元,進行技術改造后的累計純利潤為萬元(須扣除技術改造資金),求,的表達式;

2)以上述預測,從今年起該企業(yè)至少經過多少年后,進行技術改造后的累計純利潤超過不進行技術改造的累計純利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,已知,頂點P在平面ABC上的射影為的外接圓圓心.

1)證明:平面平面ABC;

2)若點M在棱PA上,,且二面角P-BC-M的余弦值為,試求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】軸上動點引拋物線的兩條切線,,其中,為切線.

1)若切線的斜率分別為,求證:為定值,并求出定值;

2)當最小時,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統計圖.

1)根據條形統計圖,估計本屆高三學生本科上線率.

2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.

i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);

ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.

可能用到的參考數據:取,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是(

A.αβ βγ ,則αγ

B. , mn ,則αβ

C. m、n 是異面直線, , mβ , , nα ,則αβ

D.平面α內有不共線的三點到平面 β的距離相等,則αβ

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中有如下問題:今有蒲生一日,長四尺,莞生一日,長一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天長高四尺,莞第一天長高一尺,以后蒲每天長高前一天的一半,莞每天長高前一天的兩倍.請問第幾天,莞的長度是蒲的長度的4倍(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,扇形的半徑為,圓心角,點為弧上一點,平面,點,∥平面

(1)求證:平面平面

(2)求平面和平面所成二面角的正弦值的大小.

查看答案和解析>>

同步練習冊答案