【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為

1)求三棱錐的體積;

2)若的中點,求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

【答案】(1)(2)

【解析】

1)由底面,可得與平面所成的角,且,因此在,,,代入求值即可;

2)設為棱的中點,連接,可得,的夾角為異面直線所成的角,即為,由求得,在利用余弦定理即可求出

解:(1)因為平面,所以與平面所成的角,

與平面所成的角為,可得,

因為平面,平面,所以,

,可知,

所以

2)設為棱的中點,連接,

分別是棱的中點,可得,

所以的夾角為異面直線所成的角,即為,

因為平面,平面,所以,,

,,,

所以,

,

所以,

故異面直線所成的角為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C1ρ2cosθ,

(1)求C1C2交點的直角坐標;

(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,是等邊三角形,是線段的中點,是線段上靠近的四等分點,平面平面.

1)求證:;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線過點,傾斜角為,在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的方程為.

1)寫出直線的參數(shù)方程和曲線的直角坐標方程;

2)若直線與曲線相交于兩點,設點,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,. 對于函數(shù)、,若存在常數(shù),使得,不等式都成立,則稱直線是函數(shù)的分界線.

1)討論函數(shù)的單調(diào)性;

2)當時,試探究函數(shù)是否存在“分界線”?若存在,求出分界線方程;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果對一切正實數(shù),,不等式恒成立,則實數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019625日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認識,某市環(huán)保部門對該市市民進行了一次垃圾分類網(wǎng)絡知識問卷調(diào)查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:

得分

頻數(shù)

25

150

200

250

225

100

50

1)由頻數(shù)分布表可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;

2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:

①得分不低于 “的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;

②每次獲贈的隨機話費和對應的概率為:

獲贈的隨機話費(單位:元)

20

40

概率

現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學期望.

附:①;②若,則,,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)年的純利潤為萬元,因設備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進行技術(shù)改造,預測從今年(年)起每年比上一年純利潤減少萬元,今年初該企業(yè)一次性投入資金萬元進行技術(shù)改造,預計在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù)).

1)設從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;

2)以上述預測,從今年起該企業(yè)至少經(jīng)過多少年后,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 m、n 是兩條不同的直線,α、βγ是三個不同的平面,下列命題中正確的是(

A.αβ , βγ ,則αγ

B. , mn ,則αβ

C. m、n 是異面直線, , mβ , , nα ,則αβ

D.平面α內(nèi)有不共線的三點到平面 β的距離相等,則αβ

查看答案和解析>>

同步練習冊答案