【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為.
(1)求三棱錐的體積;
(2)若是的中點,求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為,(t為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C1:ρ=2cosθ,.
(1)求C1與C2交點的直角坐標;
(2)若直線l與曲線C1,C2分別相交于異于原點的點M,N,求|MN|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線過點,傾斜角為,在以坐標原點為極點,軸的非負半軸為極軸的極坐標系中,曲線的方程為.
(1)寫出直線的參數(shù)方程和曲線的直角坐標方程;
(2)若直線與曲線相交于兩點,設點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,. 對于函數(shù)、,若存在常數(shù),,使得,不等式都成立,則稱直線是函數(shù)與的分界線.
(1)討論函數(shù)的單調(diào)性;
(2)當時,試探究函數(shù)與是否存在“分界線”?若存在,求出分界線方程;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年6月25日,《固體廢物污染環(huán)境防治法(修訂草案)》初次提請全國人大常委會審議,草案對“生活垃圾污染環(huán)境的防治”進行了專章規(guī)定.草案提出,國家推行生活垃圾分類制度.為了了解人民群眾對垃圾分類的認識,某市環(huán)保部門對該市市民進行了一次垃圾分類網(wǎng)絡知識問卷調(diào)查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調(diào)查的1000人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:
得分 | |||||||
頻數(shù) | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由頻數(shù)分布表可以認為,此次問卷調(diào)查的得分服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點值作為代表),請利用正態(tài)分布的知識求;
(2)在(1)的條件下,市環(huán)保部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:
①得分不低于 “的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費;
②每次獲贈的隨機話費和對應的概率為:
獲贈的隨機話費(單位:元) | 20 | 40 |
概率 |
現(xiàn)市民小王要參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列及數(shù)學期望.
附:①;②若,則,,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)年的純利潤為萬元,因設備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進行技術(shù)改造,預測從今年(年)起每年比上一年純利潤減少萬元,今年初該企業(yè)一次性投入資金萬元進行技術(shù)改造,預計在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù)).
(1)設從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;
(2)以上述預測,從今年起該企業(yè)至少經(jīng)過多少年后,進行技術(shù)改造后的累計純利潤超過不進行技術(shù)改造的累計純利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 m、n 是兩條不同的直線,α、β、γ是三個不同的平面,下列命題中正確的是( )
A.若α⊥β , β⊥γ ,則α∥γ
B.若 , , m∥n ,則α∥β
C.若 m、n 是異面直線, , m∥β , , n∥α ,則α∥β
D.平面α內(nèi)有不共線的三點到平面 β的距離相等,則α∥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com