【題目】如果對一切正實(shí)數(shù),,不等式恒成立,則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
【答案】D
【解析】
將不等式cos2x≥asinx恒成立轉(zhuǎn)化為asinx+1﹣sin2x恒成立,構(gòu)造函數(shù)f(y),利用基本不等式可求得f(y)min=3,于是問題轉(zhuǎn)化為asinx﹣sin2x≤2恒成立.通過對sinx>0、sinx<0、sinx=0三類討論,可求得對應(yīng)情況下的實(shí)數(shù)a的取值范圍,最后取其交集即可得到答案.
解:實(shí)數(shù)x、y,不等式cos2x≥asinx恒成立asinx+1﹣sin2x恒成立,
令f(y),
則asinx+1﹣sin2x≤f(y)min,
∵y>0,f(y)23(當(dāng)且僅當(dāng)y=6時(shí)取“=”),f(y)min=3;
所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.
①若sinx>0,a≤sinx恒成立,令sinx=t,則0<t≤1,再令g(t)=t(0<t≤1),則a≤g(t)min.
由于g′(t)=10,
所以,g(t)=t在區(qū)間(0,1]上單調(diào)遞減,
因此,g(t)min=g(1)=3,
所以a≤3;
②若sinx<0,則a≥sinx恒成立,同理可得a≥﹣3;
③若sinx=0,0≤2恒成立,故a∈R;
綜合①②③,﹣3≤a≤3.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】瑞士數(shù)學(xué)家、物理學(xué)家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內(nèi)任意兩點(diǎn)的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點(diǎn)數(shù)V、棱數(shù)E及面數(shù)F滿足等式V﹣E+F=2,這個(gè)等式稱為歐拉多面體公式,被認(rèn)為是數(shù)學(xué)領(lǐng)域最漂亮、簡潔的公式之一,現(xiàn)實(shí)生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由12塊黑色正五邊形面料和20塊白色正六邊形面料構(gòu)成的.20世紀(jì)80年代,化學(xué)家們成功地以碳原子為頂點(diǎn)組成了該種結(jié)構(gòu),排列出全世界最小的一顆“足球”,稱為“巴克球(Buckyball)”.則“巴克球”的頂點(diǎn)個(gè)數(shù)為( )
A.180B.120C.60D.30
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,且與交于,兩點(diǎn),已知點(diǎn)的極坐標(biāo)為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程,并求的值;
(2)若矩形內(nèi)接于曲線且四邊與坐標(biāo)軸平行,求其周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)若對于恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面是邊長為6的正三角形,底面,且與底面所成的角為.
(1)求三棱錐的體積;
(2)若是的中點(diǎn),求異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,若底面是正三角形,側(cè)棱長,、分別為棱、的中點(diǎn),并且,則異面直線與所成角為______;三棱錐的外接球的體積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,G為上一點(diǎn),且平面,.
(1)求證:平面平面;
(2)當(dāng)三棱錐體積最大時(shí),求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,且,分別是定義在上的偶函數(shù)和奇函數(shù).
(1)求函數(shù)的反函數(shù);
(2)已知,若函數(shù)在上滿足,求實(shí)數(shù)a的取值范圍;
(3)若對于任意不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com