【題目】已知為橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,則此橢圓離心率的取值范圍是____.
【答案】.
【解析】試題分析:利用橢圓的定義、余弦定理、向量的數(shù)量積公式,結(jié)合基本不等式,即可求出橢圓離心率的取值范圍.
詳解:由橢圓定義可得|PF1|+|PF2|=2a,①
∵=c2,
∴|PF1||PF2|cos∠F1PF2=c2,②
由余弦定理可得|PF1|2+|PF2|2﹣2|PF1||PF2|cos∠F1PF2=4c2,③
由①②③得cos∠F1PF2≤1,|PF1||PF2|=2a2﹣3c2,
∴e≤,
∵|PF1||PF2|≤(|PF1|+|PF2|)2=a2,
∴2a2﹣3c2≤a2,
∴e≥,
∴此橢圓離心率的取值范圍是.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的
A | B | C | D | E | F |
這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )
A. 360種 B. 432種 C. 456種 D. 480種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為 (為參數(shù)).
(1)寫(xiě)出點(diǎn)的直角坐標(biāo)及曲線(xiàn)的直角坐標(biāo)方程;
(2)若為曲線(xiàn)上的動(dòng)點(diǎn),求中點(diǎn)到直線(xiàn)的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2011年至2017年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格(單位:千元/平方米)的統(tǒng)計(jì)數(shù)據(jù)如下表:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷(xiāo)售價(jià)格 | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求關(guān)于x的線(xiàn)性回歸方程;
(2)利用(1)中的回歸方程,分析2011年至2017年該市新開(kāi)樓盤(pán)平均銷(xiāo)售價(jià)格的變化情況,并預(yù)測(cè)該市2019年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格。
附:參考公式: ,,其中為樣本平均值。
參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:;
(2)討論函數(shù)的零點(diǎn)的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分10分)一位網(wǎng)民在網(wǎng)上光顧某淘寶小店,經(jīng)過(guò)一番瀏覽后,對(duì)該店鋪中的五種商品有購(gòu)買(mǎi)意向.已知該網(wǎng)民購(gòu)買(mǎi)兩種商品的概率均為,購(gòu)買(mǎi)兩種商品的概率均為,購(gòu)買(mǎi)種商品的概率為.假設(shè)該網(wǎng)民是否購(gòu)買(mǎi)這五種商品相互獨(dú)立.
(1)求該網(wǎng)民至少購(gòu)買(mǎi)4種商品的概率;
(2)用隨機(jī)變量表示該網(wǎng)民購(gòu)買(mǎi)商品的種數(shù),求的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明函數(shù)在上為減函數(shù);
(2)求函數(shù)的定義域,并求其奇偶性;
(3)若存在,使得不等式能成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)AQI是反映空氣質(zhì)量狀況的指數(shù),AQI指數(shù)值越小,表明空氣質(zhì)量越好,其對(duì)應(yīng)關(guān)系如下表:
AQI指數(shù)值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
下圖是某市10月1日—20日AQI指數(shù)變化趨勢(shì):
下列敘述錯(cuò)誤的是
A. 這20天中AQI指數(shù)值的中位數(shù)略高于100
B. 這20天中的中度污染及以上的天數(shù)占
C. 該市10月的前半個(gè)月的空氣質(zhì)量越來(lái)越好
D. 總體來(lái)說(shuō),該市10月上旬的空氣質(zhì)量比中旬的空氣質(zhì)量好
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com