【題目】已知甲、乙兩煤礦每年的產(chǎn)量分別為200萬噸和260萬噸,需經(jīng)過東車站和西車站兩個(gè)車站運(yùn)往外地.東車站每年最多能運(yùn)280萬噸煤,西車站毎年最多能運(yùn)360萬噸煤,甲煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為1元/t和1.5元/t,乙煤礦運(yùn)往東車站和西車站的運(yùn)費(fèi)價(jià)格分別為0.8元/t和1.6元/t.煤礦應(yīng)怎樣編制調(diào)運(yùn)方案,能使總運(yùn)費(fèi)最少?
【答案】解:設(shè)甲煤礦向東車站運(yùn)x萬噸煤,乙煤礦向東車站運(yùn)y萬噸煤,那么總運(yùn)費(fèi): z=x+1.5(200﹣x)+0.8y+1.6(260﹣y)(萬元),
即z=716﹣0.5x﹣0.8y.
x、y應(yīng)滿足 ,
作出上面的不等式組所表示的平面區(qū)域,如圖.
.
設(shè)直線x+y=280與y=260的交點(diǎn)為M,則M(20,260).
把直線l0:5x+8y=0向上平移至經(jīng)過平面區(qū)域上的點(diǎn)M時(shí),z的值最。
∵點(diǎn)M的坐標(biāo)為(20,260),
∴甲煤礦生產(chǎn)的煤向東車站運(yùn)20萬噸,向西車站運(yùn)180萬噸,乙煤礦生產(chǎn)的煤全部運(yùn)往東車站時(shí),總運(yùn)費(fèi)最少.
【解析】設(shè)甲煤礦向東車站運(yùn)x萬噸煤,乙煤礦向東車站運(yùn)y萬噸煤,那么總運(yùn)費(fèi):z=x+1.5(200﹣x)+0.8y+1.6(260﹣y),即z=716﹣0.5x﹣0.8y.由題意得到關(guān)于x,y的不等式組,由線性規(guī)劃知識(shí)求得能使總運(yùn)費(fèi)最少的x,y值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PC⊥平面ABC,∠PAC=30°,∠ACB=45°,BC=2 ,PA⊥AB.
(1)求PC的長(zhǎng);
(2)若點(diǎn)M在側(cè)棱PB上,且 ,當(dāng)λ為何值時(shí),二面角B﹣AC﹣M的大小為30°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京、張家港2022年冬奧會(huì)申辦委員會(huì)在俄羅斯索契舉辦了發(fā)布會(huì),某公司為了競(jìng)標(biāo)配套活動(dòng)的相關(guān)代言,決定對(duì)旗下的某商品進(jìn)行一次評(píng)估.該商品原來每件售價(jià)為25元,年銷售8萬件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對(duì)該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入 萬作為技改費(fèi)用,投入(50+2x)萬元作為宣傳費(fèi)用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程ax2+by2=ab和ax+by+c=0(其中ab≠0,a≠b,c>0,它們所表示的曲線可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=sin(2x+ )+ cos(2x+ ),則( )
A.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
B.y=f(x)在(0, )單調(diào)遞增,其圖象關(guān)于直線x= 對(duì)稱
C.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
D.y=f(x)在(0, )單調(diào)遞減,其圖象關(guān)于直線x= 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形, ,AB⊥AD,AB∥CD,點(diǎn)M是PC的中點(diǎn). (I)求證:MB∥平面PAD;
(II)求二面角P﹣BC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,PD⊥平面ABCD,BC⊥CD,PD=1,AB= ,BC=CD= ,AD=1.
(1)求異面直線AB、PC所成角的余弦值;
(2)點(diǎn)E是線段AB的中點(diǎn),求二面角E﹣PC﹣D的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com