【題目】某科研小組研究發(fā)現(xiàn):一棵水蜜桃樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:,且投入的肥料費用不超過5百元.此外,還需要投入其他成本(如施肥的人工費等)百元.已知這種水蜜桃的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水蜜桃樹獲得的利潤為(單位:百元).

(1)求利潤函數(shù)的函數(shù)關系式,并寫出定義域;

(2)當投入的肥料費用為多少時,該水蜜桃樹獲得的利潤最大?最大利潤是多少?

【答案】(1)見解析(2)當投入的肥料費用為300元時,種植該果樹獲得的最大利潤是4300元.

【解析】

試題(1)根據(jù)利潤等于收入減成本列式: ,投入的肥料費用不超過5百元及實際意義得定義域,(2)利用基本不等式求最值:先配湊: ,再根據(jù)一正二定三相等求最值.

試題解析:解:(1) ).

(2)

.

當且僅當時,即時取等號.

.

答:當投入的肥料費用為300元時,種植該果樹獲得的最大利潤是4300元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 對任意實數(shù)a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司擁有汽車100.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費.

1)當每輛車的月租金定為元時,能租出多少輛車?

2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)恒過定點

(1)求實數(shù)

(2)在(1)的條件下,將函數(shù)的圖象向下平移個單位,再向左平移個單位后得到函數(shù),設函數(shù)的反函數(shù)為,求的解析式.

(3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若的一條切線,求的值;

(3)已知,為整數(shù),若對任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的公比,前項和為,且滿足.,分別是一個等差數(shù)列的第1項,第2項,第5項.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和;

(3)若,的前項和為,且對任意的滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三某班有60名學生(其中女生有20名),三好學生占,而且三好學生中女生占一半,現(xiàn)在從該班任選一名學生參加座談會,則在已知沒有選上女生的條件下,選上的是三好學生的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】江蘇省南通市2018屆高三最后一卷 --- 備用題數(shù)學試題已知函數(shù),其中.

(1)當時,求函數(shù)處的切線方程;

(2)若函數(shù)存在兩個極值點,求的取值范圍;

(3)若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在R上的且以2為周期的偶函數(shù),當0≤x≤1時,f(x)=x2 , 如果直線y=x+a與曲線y=f(x)恰有兩個不同的交點,則實數(shù)a的值為(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

同步練習冊答案