集合M={x|y=|x|},N={y|y=|x|},則M與N的關系為
 
考點:集合的包含關系判斷及應用
專題:集合
分析:本題是函數(shù)與集合包含關系的結合題目,認清研究對象是中等題目.
解答: 解:∵集合M={x|y=|x|},即M=R,
N={y|y=|x|},即N={y|y≥0}
∴N?M.
故答案為:N?M
點評:本題主要考查集合的相等等基本運算,屬于基礎題.要正確判斷兩個集合間的關系,必須對集合的相關概念有深刻的理解,善于抓住代表元素,認清集合的特征.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y,z∈R+,x+y+z=3.
(1)求
1
x
+
1
y
+
1
z
的最小值
(2)證明:3≤x2+y2+z2<9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,離心率為
1
2
的橢圓Ω:
x2
a2
+
y2
b2
=1(a>b>0)上的點到其左焦點的距離的最大值為3,過橢圓Ω內一點P的兩條直線分別與橢圓交于點A、C和B、D,且滿足
AP
PC
BP
PD
,其中λ為常數(shù),過點P作AB的平行線交橢圓于M、N兩點.
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)若點P(1,1),求直線MN的方程,并證明點P平分線段MN.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|
1
3
<3x<9},B={x|log2x>0}.
(Ⅰ)求A∩B和A∪B;
(Ⅱ)定義A-B={x|x∈A且x∉B},求A-B和B-A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“a=1”是“直線ax-y+2a=0與直線(2a-1)x+ay+a=0互相垂直”的
 
條件(在“必要不充分”、“充分不必要”、“充要”、“既不充分又不必要”中選一個合適的填空).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖,則這個幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

七個人站成一排,其中甲在乙前(不一定相鄰),乙在丙前,則共有
 
種不同的站法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程sin2x+cos2x=k在區(qū)間[0,
π
2
]上有兩個不同的實數(shù)解,則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

幾何體的三視圖如圖所示,當這個幾何體的體積最大時,a-
2
b的值是
 

查看答案和解析>>

同步練習冊答案