【題目】已知四棱柱的底面是邊長為的菱形,且,平面,,設為的中點
(1)求證:平面
(2)點在線段上,且平面,求平面和平面所成銳角的余弦值.
【答案】(1)證明略;(2)
【解析】
試題分析:(1)由已知該四棱柱為直四棱柱,且為等邊三角形,,所以平面,故,在中的三邊長分別為,所以,所以,故平面;
(2)取中點,則由為等邊三角形,知,從而,以為坐標軸,建立空間直角的坐標系,求得平面和平面的法向量,即可求得平面和平面所成銳角的余弦值.
試題解析:(1)證明:由已知該四棱柱為直四棱柱,且為等邊三角形,
所以平面,而平面,故
因為的三邊長分別為,故為等腰直角三角形
所以,結合知:平面
(2)解:取中點,則由為等邊三角形
知,從而
以為坐標軸,建立如圖所示的坐標系
此時,
,設
由上面的討論知平面的法向量為
由于平面,故平面
故,故
設平面的法向量為,
由知,取,故
設平面和平面所成銳角為,則
即平面和平面所成銳角的余弦值為
科目:高中數(shù)學 來源: 題型:
【題目】如圖“月亮圖”是由曲線與構成,曲線是以原點為中點, 為焦點的橢圓的一部分,曲線是以為頂點, 為焦點的拋物線的一部分, 是兩條曲線的一個交點.
(Ⅰ)求曲線和的方程;
(Ⅱ)過作一條與軸不垂直的直線,分別與曲線依次交于四點,若為的中點, 為的中點,問: 是否為定值?若是求出該定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體中,分別為的中點.
(1)求證:平面⊥平面;
(2)當點在上運動時,是否都有平面,證明你的結論;
(3)若是的中點,求與所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術”思想設計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): , , )
A. 24 B. 30 C. 36 D. 48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調5名醫(yī)生組成醫(yī)療小組前往災區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設不同的選派方法種數(shù)為N,則下列等式:
①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;
③C135﹣C71C64﹣C65; ④C72C113;
其中能成為N的算式是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com