【題目】已知四棱柱的底面是邊長為的菱形,且平面,,設的中點

1求證:平面

2在線段上,且平面,求平面和平面所成銳角的余弦值.

【答案】1證明略;2

【解析】

試題分析:1由已知該四棱柱為直四棱柱,且為等邊三角形,,所以平面,故,在中的三邊長分別為,所以,所以,故平面

2中點,則由為等邊三角形,知,從而,以為坐標軸,建立空間直角的坐標系,求得平面和平面的法向量,即可求得平面和平面所成銳角的余弦值.

試題解析:1證明:由已知該四棱柱為直四棱柱,且為等邊三角形,

所以平面,而平面,故

因為的三邊長分別為,故為等腰直角三角形

所以,結合知:平面

2解:取中點,則由為等邊三角形

,從而

為坐標軸,建立如圖所示的坐標系

此時,

,設

由上面的討論知平面的法向量為

由于平面,故平面

,故

設平面的法向量為,

,取,故

設平面和平面所成銳角為,則

即平面和平面所成銳角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設圓上的點A(2,3)關于直線x+2y=0的對稱點仍在圓上,且直線xy+1=0被圓截得的弦長為2,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖“月亮圖”是由曲線構成,曲線是以原點為中點, 為焦點的橢圓的一部分,曲線是以為頂點, 為焦點的拋物線的一部分, 是兩條曲線的一個交點.

(Ⅰ)求曲線的方程;

(Ⅱ)過作一條與軸不垂直的直線,分別與曲線依次交于四點,若的中點, 的中點,問: 是否為定值?若是求出該定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點,且圓的圓心到的距離為.

(1)求直線被該圓所截得的弦長;

(2)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,分別為的中點.

(1)求證:平面⊥平面;

(2)當點上運動時,是否都有平面,證明你的結論;

(3)若的中點,求所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術”思想設計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): , ,

A. 24 B. 30 C. 36 D. 48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求的最小正周期和最大值;

(2)討論的單調性。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調5名醫(yī)生組成醫(yī)療小組前往災區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設不同的選派方法種數(shù)為N,則下列等式:

①C135﹣C71C64;②C72C63+C73C62+C74C61+C75

③C135﹣C71C64﹣C65; ④C72C113

其中能成為N的算式是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷量價格P(元)的關系如圖所示;③每月需各種開支2 000元.

(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;

(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

同步練習冊答案