已知偶函數(shù)滿足:當時,,當時,
(Ⅰ)求表達式;
(Ⅱ)若直線與函數(shù)的圖像恰有兩個公共點,求實數(shù)的取值范圍;
(Ⅲ)試討論當實數(shù)滿足什么條件時,直線的圖像恰有個公共點,且這個公共點均勻分布在直線上.(不要求過程)

(Ⅰ).;(Ⅱ).  (Ⅲ).當時,
時, 此時; 當時,,
此時

解析試題分析:(1)由為偶函數(shù),則有,又因為當,,,所以當時,,即可求出 .當時,同理可求出此時的.(2)畫出的大致圖像,由圖1易知,當時,函數(shù)恰有兩個交點,所以當時,函數(shù)無交點,易得當時恒成立,當時,則有,即可求出
,時,函數(shù)的圖像如圖2所示,此時直線的圖像若恰有個公共點,且這個公共點均勻分布在直線上,則易知時符合題意,設(shè)時由左到右的兩個交點的橫坐標分別為,由函數(shù)的對稱性易知,,此時.其他情況同理即可求出.

圖1                             圖2
試題解析:(1)為偶函數(shù),則有
時,,
時,,,即,故有
(2)如下圖,當時,由圖像易知函數(shù)恰有兩個交點,時,函數(shù)無交點.由
時,此時符合題意;
時,由,即,可得.由偶函數(shù)的對稱性可知時,與時的

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的定義域;
(2)求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)交于兩點且,奇函數(shù),當時,都在取到最小值.
(1)求的解析式;
(2)若圖象恰有兩個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并給出證明;
(3)當a>1時,求使f(x)>0的x的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)的定義域;
(Ⅱ)求的值,作出函數(shù)的圖象并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù)
(1)探索函數(shù)的單調(diào)性,并用單調(diào)性定義證明;
(2)是否存在實數(shù)使函數(shù)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設(shè)的定義域為A,求集合A;
(2)判斷函數(shù)在(1,+)上單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)函數(shù)的定義域為,并且滿足,且,當時,
(1).求的值;(3分)
(2).判斷函數(shù)的奇偶性;(3分)
(3).如果,求的取值范圍.(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)定義域為的函數(shù)為實數(shù))。
(1)若是奇函數(shù),求的值;  
(2)當是奇函數(shù)時,證明對任何實數(shù)都有成立.

查看答案和解析>>

同步練習冊答案