【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn).

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

【答案】(1)見解析;(2)見解析.

【解析】(1)在直三棱柱ABC-A1B1C1中,CC1平面ABC.

因?yàn)锳E平面ABC,

所以CC1AE,

因?yàn)锳B=AC,E為BC的中點(diǎn),

所以AEBC.

因?yàn)锽C在平面B1BCC1內(nèi),CC1在平面B1BCC1內(nèi)且BC∩CC1=C,

所以AE平面B1BCC1

因?yàn)锳E在平面AB1E內(nèi),

所以平面AB1E平面B1BCC1

(2)連接A1B,設(shè)A1B∩AB1=F,連接EF.

在直三棱柱ABC-A1B1C1中,四邊形AA1B1B為平行四邊形,

所以F為A1B的中點(diǎn).

又因?yàn)镋是BC的中點(diǎn),

所以EFA1C.

因?yàn)镋F在平面AB1E內(nèi),A1C不在平面AB1E內(nèi),

所以A1C平面AB1E

【方法點(diǎn)晴】本題主要考查線面平行的判定定理以及線面垂直、面面垂直的判定,屬于難題.證明線面平行的常用方法:

利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.

利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面

本題(2)是就是利用方法證明的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求點(diǎn)M到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,g(x)=x+lnx,其中a>0.
(1)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若對(duì)任意的x1 , x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .

1)令,求的單調(diào)區(qū)間;

2)已知處取得極大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣(a+1)lnx﹣ ,其中a∈R.
(Ⅰ)求證:當(dāng)a=1時(shí),函數(shù)y=f(x)沒有極值點(diǎn);
(Ⅱ)求函數(shù)y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的一個(gè)頂點(diǎn)為A(0,1),離心率為 ,過點(diǎn)B(0,﹣2)及左焦點(diǎn)F1的直線交橢圓于C,D兩點(diǎn),右焦點(diǎn)設(shè)為F2
(1)求橢圓的方程;
(2)求△CDF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α是三角形的內(nèi)角,且sinα+cosα=
(1)求cos2α的值;
(2)把 用tanα表示出來,并求其值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“微信運(yùn)動(dòng)”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運(yùn)動(dòng)”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評(píng)定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評(píng)定類型”與“性別”有關(guān)?

附: ,

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計(jì)其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有人,超過10000步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足對(duì)任意的都有,且

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,不等式對(duì)任意的正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案