【題目】函數(shù)f(x)=|sinx|+|sin(x+ )|的值域?yàn)?/span>

【答案】[ , ]
【解析】解:令sinx=0和sin(x+ )=0,x∈[0,2π), 解得x=0,π和x= , ;
∴①當(dāng)x∈[0, ]時(shí),sinx≥0,sin(x+ )≥0,
∴f(x)=sinx+sin(x+ )=2sin(x+ )cos = sin(x+ );
此時(shí)x+ ∈[ , ],
≤sin(x+ )≤1,
≤f(x)≤ ;
②當(dāng)x∈(π, )時(shí),sinx<0,sin(x+ )<0,
∴f(x)=﹣sinx﹣sin(x+ )=﹣ sin(x+ );
此時(shí)x+ ∈( ),
﹣1≤sin(x+ )≤﹣ ,
≤f(x)≤ ;
③當(dāng)x∈( ,π)時(shí),sinx>0,sin(x+ )<0,
∴f(x)=sinx﹣sin(x+ )=2sin(﹣ )cos(x+ )=﹣cos(x+ );
此時(shí)x+ ∈( , ),
﹣1≤cos(x+ )<﹣ ,
≤f(x)≤ ;
④當(dāng)x∈( ,2π]時(shí),sinx≤0,sin(x+ )>0,
∴f(x)=﹣sinx+sin(x+ )=2sin cos(x+ )=cos(x+ );
此時(shí)x+ ∈( , ],
≤sin(x+ )≤1,
<f(x)≤1;
綜上,函數(shù)f(x)的值域?yàn)閇 , ].
所以答案是:[ , ].
【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角函數(shù)的最值的相關(guān)知識(shí)可以得到問題的答案,需要掌握函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)的動(dòng)直線與拋物線 相交于, 兩點(diǎn).當(dāng)直線的斜率是時(shí), .

(1)求拋物線的方程;

(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),角的終邊經(jīng)過點(diǎn).若的圖象上任意兩點(diǎn),且當(dāng)時(shí),的最小值為.

(1) 的值

(2)求函數(shù)上的單調(diào)遞減區(qū)間;

(3)當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(﹣1,0),B(1,0)為雙曲線 =1(a>0,b>0)的左右頂點(diǎn),點(diǎn)M在雙曲線上,△ABM為等腰三角形,且頂角為120°,則該雙曲線的標(biāo)準(zhǔn)方程為(
A.x2 =1
B.x2 =1
C.x2﹣y2=1
D.x2 =1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如表:

月份

1

2

3

4

5

6

銷售量x/萬件

10

11

13

12

8

6

利潤(rùn)y/萬元

22

25

29

26

16

12

(1)根據(jù)2~5月份的統(tǒng)計(jì)數(shù)據(jù),求出y關(guān)于x的回歸直線方程x+;

(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2萬元,則認(rèn)為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某算法的程序框圖如圖所示,其中輸入的變量x1,2,3,…,3030個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生.

(1)分別求出(按程序框圖正確編程運(yùn)行時(shí))輸出y的值為i的概率Pi(i=1,2,3);

(2)甲、乙兩同學(xué)依據(jù)自己對(duì)程序框圖的理解,各自編寫程序重復(fù)運(yùn)行n次后,統(tǒng)計(jì)記錄了輸出y的值為i(i=1,2,3)的頻數(shù),下面是甲、乙所作頻數(shù)統(tǒng)計(jì)表的部分?jǐn)?shù)據(jù):

甲的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)

輸出y=1

的頻數(shù)

輸出y=2

的頻數(shù)

輸出y=3

的頻數(shù)

30

16

11

3

2 000

967

783

250

乙的頻數(shù)統(tǒng)計(jì)表(部分)

運(yùn)行次數(shù)

輸出y=1

的頻數(shù)

輸出y=2

的頻數(shù)

輸出y=3

的頻數(shù)

30

13

13

4

2 000

998

803

199

當(dāng)n=2 000時(shí),根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分?jǐn)?shù)表示),并判斷甲、乙中誰(shuí)所編寫的程序符合算法要求的可能性較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD﹣A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ= 時(shí),求二面角A﹣D1M﹣B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市城鎮(zhèn)化改革過程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的統(tǒng)計(jì)數(shù)據(jù):

年份

2011

2012

2013

2014

2015

居民生活用水量(萬噸)

236

246

257

276

286


(1)利用所給數(shù)據(jù)求年居民生活用水量與年份之間的回歸直線方程y=bx+a;
(2)根據(jù)改革方案,預(yù)計(jì)在2020年底城鎮(zhèn)化改革結(jié)束,到時(shí)候居民的生活用水量將趨于穩(wěn)定,預(yù)計(jì)該城市2023年的居民生活用水量.
參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案