【題目】山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為、、、、、、共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為、、、、、.等級考試科目成績計入考生總成績時,將等級內的考生原始成績,依照等比例轉換法則,分別轉換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.

舉例說明.

某同學化學學科原始分為65分,該學科等級的原始分分布區(qū)間為58~69,則該同學化學學科的原始成績屬等級.而等級的轉換分區(qū)間為61~70,那么該同學化學學科的轉換分為:

設該同學化學科的轉換等級分為,求得.

四舍五入后該同學化學學科賦分成績?yōu)?7.

(1)某校高一年級共2000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布.

(i)若小明同學在這次考試中物理原始分為84分,等級為,其所在原始分分布區(qū)間為82~93,求小明轉換后的物理成績;

(ii)求物理原始分在區(qū)間的人數(shù);

(2)按高考改革方案,若從全省考生中隨機抽取4人,記表示這4人中等級成績在區(qū)間的人數(shù),求的分布列和數(shù)學期望.

(附:若隨機變量,則,

【答案】(1)(i)83.;(ii)272.(2)見解析.

【解析】

1)根據(jù)原始分數(shù)分布區(qū)間及轉換分區(qū)間,結合所給示例,即可求得小明轉換后的物理成績;根據(jù)正態(tài)分布滿足,結合正態(tài)分布的對稱性即可求得內的概率,根據(jù)總人數(shù)即可求得在該區(qū)間的人數(shù)。

2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間內的概率為,由二項分布即可求得的分布列及各情況下的概率,結合數(shù)學期望的公式即可求解。

1)(i)設小明轉換后的物理等級分為,

,

求得.

小明轉換后的物理成績?yōu)?/span>83分;

ii)因為物理考試原始分基本服從正態(tài)分布,

所以

.

所以物理原始分在區(qū)間的人數(shù)為(人);

2)由題意得,隨機抽取1人,其等級成績在區(qū)間內的概率為,

隨機抽取4人,則.

,,

,,

.

的分布列為

0

1

2

3

4

數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

1)求fx)的單調區(qū)間;

2)當x0時,exax2xa0成立,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知是正三角形,若平面,平面平面,且

1)求證:平面;

2)若平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙紐線最早于1694年被瑞士數(shù)學家雅各布·伯努利用來描述他所發(fā)現(xiàn)的曲線.在平面直角坐標系中,把到定點,距離之積等于的點的軌跡稱為雙紐線.已知點是雙紐線上一點,下列說法中正確的有(

①雙紐線經過原點; ②雙紐線關于原點中心對稱;

; ④雙紐線上滿足的點有兩個.

A.①②B.①②③C.②③D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若,且在其定義域上存在單調遞減區(qū)間,求實數(shù)的取值范圍;

(2)設函數(shù) ,若恒成立,求實數(shù)的取值范圍;

(3)設函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點作軸的垂線分別交, 于點、,證明: 在點處的切線與在點處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,且曲線關于直線對稱.

1)求;

2)若直線與曲線交于,,直線與曲線交于,,且的面積不超過,求直線的傾斜角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.對具有線性相關關系的變量有一組觀測數(shù)據(jù),其線性回歸方程是,且,則實數(shù)的值是

B.正態(tài)分布在區(qū)間上取值的概率相等

C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1

D.若一組數(shù)據(jù)的平均數(shù)是2,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當a=-2時,求函數(shù)f(x)的極值;

2)若ln[e(x+1)]≥2- f(-x)對任意的x[0+∞)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知棱長為2的正方體中,EDC中點,F在線段上運動,則三棱錐的外接球的表面積最小值為( )

A.B.C.D.

查看答案和解析>>

同步練習冊答案