如圖所示,已知拋物線E:y2=x與圓M:(x-4)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn).

(1)求r的取值范圍;
(2)當(dāng)四邊形ABCD的面積最大時(shí),求對(duì)角線AC、BD的交點(diǎn)P的坐標(biāo).

(1)(,4)  (2)(,0)

解析解:(1)將y2=x代入(x-4)2+y2=r2,
并化簡(jiǎn)得x2-7x+16-r2=0,①
E與M有四個(gè)交點(diǎn)的充要條件是方程①有兩個(gè)不等的正根x1,x2,
由此得
解得<r2<16.
又r>0,
所以r的取值范圍是(,4).
(2)不妨設(shè)E與M的四個(gè)交點(diǎn)的坐標(biāo)為:
A(x1,)、B(x1,-)、C(x2,-)、D(x2,).
則直線AC、BD的方程分別為
y-=·(x-x1),
y+=(x-x1),
解得點(diǎn)P的坐標(biāo)為(,0).
設(shè)t=,
由t=及(1)知0<t<.
由于四邊形ABCD為等腰梯形,
因而其面積S=(2+2)·|x2-x1|.
則S2=(x1+x2+2)[(x1+x2)2-4x1x2].
將x1+x2=7,=t代入上式,
并令f(t)=S2,
得f(t)=(7+2t)2·(7-2t)(0<t<).
求導(dǎo)數(shù),f′(t)=-2(2t+7)(6t-7),
令f′(t)=0得t=,t=-(舍去),
當(dāng)0<t<時(shí),f′(t)>0;
當(dāng)<t<時(shí),f′(t)<0.
故當(dāng)且僅當(dāng)t=時(shí),f(t)有最大值,
即四邊形ABCD的面積最大.
故所求的點(diǎn)P的坐標(biāo)為(,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線=1的離心率為2,焦點(diǎn)到漸近線的距離等于,過(guò)右焦點(diǎn)F2的直線l交雙曲線于A、B兩點(diǎn),F(xiàn)1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系xOy中,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)在C1上.
(1)求橢圓C1的方程;
(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知圓C與y軸相切于點(diǎn)T(0,2),與x軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的右側(cè)),且|MN|=3,已知橢圓D:+=1(a>b>0)的焦距等于2|ON|,且過(guò)點(diǎn)(,).

(1)求圓C和橢圓D的方程;
(2)若過(guò)點(diǎn)M斜率不為零的直線l與橢圓D交于A、B兩點(diǎn),求證:直線NA與直線NB的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過(guò)點(diǎn)P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過(guò)點(diǎn)P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過(guò)點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過(guò)點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱(chēng)點(diǎn),作直線QG,問(wèn)這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,直線是直線上的線段,且是橢圓上一點(diǎn),求面積的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)在橢圓:上,以為圓心的圓與軸相切于橢圓的右焦點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)已知點(diǎn),設(shè)是橢圓上的一點(diǎn),過(guò)兩點(diǎn)的直線軸于點(diǎn),若, 求直線的方程;
(3)作直線與橢圓:交于不同的兩點(diǎn),,其中點(diǎn)的坐標(biāo)為,若點(diǎn)是線段垂直平分線上一點(diǎn),且滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點(diǎn),M,N分別是雙曲線E的左,右頂點(diǎn),直線PM,PN的斜率之積為.
(1)求雙曲線的離心率.
(2)過(guò)雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足+,求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案