任給實數(shù)a,b定義a⊕b=
a×b,a×b≥0
a
b
,a×b<0
  設(shè)函數(shù)f(x)=lnx⊕x,若{an}是公比大于0的等比數(shù)列,且a5=1,f(a1)+f(a2)+f(a3)+…+f(a7)+f(a8)=a1,則a1=
 
考點:分段函數(shù)的應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:由新定義可得f(x)=lnx⊕x=
xlnx,x≥1
lnx
x
,0<x<1
,代入數(shù)值求解可得;可設(shè)該數(shù)列的前8項分別為
1
q4
,
1
q3
1
q2
,
1
q 
,1,q,q2,q3,當q>1時,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=-q4lnq4<0,不合題意,當0<q<1時,f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=q4lnq4=
1
q4
,解之即可.
解答: 解:∵a⊕b=
a×b,a×b≥0
a
b
,a×b<0

∴f(x)=lnx⊕x=
xlnx,x≥1
lnx
x
,0<x<1
,
∴f(2)+f(
1
2
)=2ln2+
ln
1
2
1
2
=2ln2+2ln
1
2
=2ln2-2ln2=0;
∵{an}是公比大于0的等比數(shù)列,且a5=1,
故可設(shè)該數(shù)列的前8項分別為
1
q4
,
1
q3
,
1
q2
1
q 
,1,q,q2,q3
故當q>1時,數(shù)列的前4項
1
q4
1
q3
,
1
q2
,
1
q 
均為(0,1)之間的數(shù),
數(shù)列的6、7、8項q,q2,q3均大于1,
f(a1)+f(a2)+f(a3)…+f(a7)+f(a8
=q4ln
1
q4
+q3ln
1
q3
+q2ln
1
q2
+qln
1
q 
+0+qlnq+q2lnq2+q3lnq3=-q4lnq4<0,
這與f(a1)+f(a2)+f(a3)…+f(a7)+f(a8)=a1=
1
q4
>0矛盾;
同理可得當0<q<1時,數(shù)列的前4項
1
q4
,
1
q3
,
1
q2
,
1
q 
均為大于1,
數(shù)列的6、7、8項q,q2,q3均為(0,1)之間的數(shù),
f(a1)+f(a2)+f(a3)+…+f(a7)+f(a8)=q4lnq4=a1=
1
q4
,
解得
1
q4
=e,故a1=e,
故答案為:e
點評:本題考查新定義,涉及函數(shù)的求值以及數(shù)列的求和,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

用反證法證明:方程3x=12只有一個實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點,焦點在坐標軸上,點P(-2,0)到其漸近線的距離為
2
6
3
.若過P點作斜率為
2
2
的直線交雙曲線于A,B兩點,交y軸于M點,且PM是PA與PB的等比中項,則雙曲線的半焦距為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=loga(x2-ax+3)(a>0且a≠1),滿足對任意實數(shù)x1、x2,當x2>x1
a
2
時,f(x1)-f(x2)<0,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義域和值域均為[0,1]的函數(shù)f(x),設(shè)f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x))(n∈N*),若xo滿足fn(x0)=x0,則xo稱為f(x)的n階周期點.
(1)若f(x)=2x(0≤x≤1),則f(x)的2階周期點的值為
 

(2)若f(x)=
2x,x∈[0,
1
2
]
2-2x,x∈(
1
2
,1]
,則f(x)的2階周期點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,若a9=0,則有a1+a2+…+an=a1+a2+…+a17-n(其中n<17,且n∈N*).類比上述性質(zhì),在等比數(shù)列{bn}中,若b10=1,則有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,E,F(xiàn)分別為正方形ABCD的邊BC,CD的中點,沿圖中虛線將邊長為2的正方形折起來,圍成一個三棱錐,則此三棱錐的體積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+
2tanx
1+tan2x
-(1+cos2x)•tan2x,給出下列四個命題:
①函數(shù)f(x)的最小正周期為π,且在[
π
8
,
5
8
π]上遞減;
②直線x=
π
8
是函數(shù)f(x)的圖象的一條對稱軸;
③對稱中心(kπ+
π
8
,0);
④若x∈[0,
π
8
]時函數(shù)f(x)的值域為[1,
2
].
其中正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={3,sinα},B={2,cosα},若A∩B={-
2
2
},則α=
 

查看答案和解析>>

同步練習冊答案