分析 (1)根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),分別求其值域,再求并集即可,
(2)由題意可得a的不等式組,解不等式組可得.
解答 解:(1)當(dāng)a=32時,若x≤1,則f(x)=2x-32,則其值域?yàn)椋?32,12],
若x>1,f(x)=log32x,則其值域?yàn)椋?,+∞),
綜上所述函數(shù)f(x)的值域?yàn)椋?32,+∞),
(2)∵f(x)在R上是增函數(shù),
∴a>1,
此時f(x)=2x-a的最大值為2-a,f(x)=logax>0,
∴2-a≤0,
解得a≥2,
故a的取值范圍為[2,+∞),
故答案為:(1):(-32,+∞),(2):[2,+∞)
點(diǎn)評 本題考查分段函數(shù)的單調(diào)性,由題意得出a的不等式組是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,x02>lnx0 | B. | ?x∈R,x2≤lnx | C. | ?x0∈R,x02≤lnx0 | D. | ?x∈R,x2<lnx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7.5 | B. | 7 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | R | B. | [1,3] | C. | {1,2,3} | D. | {3,5,7} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 23 | C. | 34 | D. | 45 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com