【題目】如圖,“大衍數(shù)列”:來源于《乾坤譜》中對《易傳》“大衍之?dāng)?shù)五十”的推論,主要用于解釋中國傳統(tǒng)文化中的太極衍生過程中曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和.下圖是求大衍數(shù)列前項和的程序框圖.執(zhí)行該程序框圖,輸入,則輸出的( )

A. 64 B. 68 C. 100 D. 140

【答案】B

【解析】分析:由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量S的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

詳解:模擬程序的運行,可得n=1,S=0,m=7;a=0,S=0;n=2, a=2,S=2; n=3,a=4,s=6;n=4,a=8,s=14;n=5,a=12,s=26;n=6,a=8,s=44;n=7,a=24,s=68,所以輸出的是68.

故答案為:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有一個實數(shù)解,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面是正方形,頂點在底面的射影是底面的中心,且各頂點都在同一球面上,若該四棱錐的側(cè)棱長為,體積為4,且四棱錐的高為整數(shù),則此球的半徑等于( )(參考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中,為自然對數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和極值;

(2)是否存在,對任意的,任意的,都有?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為直徑的圓上, 垂直與圓所在平面, 的垂心.

(1)求證:平面平面;

(2)若,點在線段上,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足,當(dāng)時,,函數(shù).若對任意,存在,不等式成立,則實數(shù)的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的上、下焦點分別為,上焦點到直線的距離為3,橢圓的離心率.

(1)求橢圓的方程;

(2)橢圓,設(shè)過點斜率存在且不為0的直線交橢圓兩點,試問軸上是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國文明城市,簡稱文明城市,是指在全面建設(shè)小康社會中市民整體素質(zhì)和城市文明程度較高的城市.全國文明城市稱號是反映中國大陸城市整體文明水平的最高榮譽稱號.為普及相關(guān)知識,爭創(chuàng)全國文明城市,某市組織了文明城市知識競賽,現(xiàn)隨機抽取了甲、乙兩個單位各5名職工的成績(單位:分)如下表:

(1)根據(jù)上表中的數(shù)據(jù),分別求出甲、乙兩個單位5名職工的成績的平均數(shù)和方差,并比較哪個單位的職工對文明城市知識掌握得更好;

(2)用簡單隨機抽樣法從乙單位5名職工中抽取2人,求抽取的2名職工的成績差的絕對值不小于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

購買某種保險,每個投保人每年度向保險公司交納保費元,若投保人在購買保險的一年度內(nèi)出險,則可以獲得10 000元的賠償金.假定在一年度內(nèi)有10 000人購買了這種保險,且各投保人是否出險相互獨立.已知保險公司在一年度內(nèi)至少支付賠償金10 000元的概率為。

)求一投保人在一年度內(nèi)出險的概率;

)設(shè)保險公司開辦該項險種業(yè)務(wù)除賠償金外的成本為50 000元,為保證盈利的期望不小于0,求每位投保人應(yīng)交納的最低保費(單位:元)。

查看答案和解析>>

同步練習(xí)冊答案