【題目】已知拋物線C:x2=4y的焦點(diǎn)為F,直線:y=kx+b(k≠0)交拋物線C于A、B兩點(diǎn),|AF|+|BF|=4,M(0,3).

(1)若AB的中點(diǎn)為T,直線MT的斜率為,證明:k· 為定值;

(2)求△ABM面積的最大值.

【答案】(1)見解析;(2)

【解析】

(1)聯(lián)立求出AB的中點(diǎn)坐標(biāo)為T(2k,1),再計算得k·=-1.(2)先求出點(diǎn)M到直線l距離,再求出,再求出 ,最后構(gòu)造函數(shù)利用導(dǎo)數(shù)求面積的最大值得解.

(1)證明:聯(lián)立,消去y得,x2-4kx-4b=0,

△=16k2+16b>0,即k2+b>0,

設(shè)A(x1,y1),B(x2,y2),

由韋達(dá)定理得x1+x2=4k,x1x2=-4b,

因?yàn)閨AF|+|BF|=4,

由拋物線定義得y1+1+y2+1=4,得y1+y2=2,

所以AB的中點(diǎn)坐標(biāo)為T(2k,1),

所以,所以k·=-1.

(2)由(1)得|x1-x2|2=(x1+x22-4x1x2=16(k2+b),

,

設(shè)點(diǎn)M到直線l距離為d,則,

而由(1)知,y1+y2=kx1+b+kx2+b=k(x1+x2)+2b=4k2+2b=2,

即2k2+b=1,即b=1-2k2,由△=16k2+16b>0,得0<k2<1,

所以

令t=k2,0<t<1,設(shè)f(t)=(1+t)2(1-t)=1+t-t2-t3,0<t<1,

=1-2t-3t2=(t+1)(-3t+1),時,>0,f(t)為增函數(shù);

時,<0,f(t)為減函數(shù);

所以當(dāng),

所以,S△ABM的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)作一直線與雙曲線相交于兩點(diǎn),若中點(diǎn),則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),過點(diǎn)且傾斜角為的直線與曲線交于兩點(diǎn).

(1)求的取值范圍;

(2)求中點(diǎn)的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x-1(a∈R),若對任意x1∈[1,+∞),總存在x2∈R,使f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知復(fù)數(shù)集合 ,其中為虛數(shù)單位,若復(fù)數(shù),則對應(yīng)的點(diǎn)在復(fù)平面內(nèi)所形成圖形的面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)濟(jì)訂貨批量模型,是目前大多數(shù)工廠、企業(yè)等最常采用的訂貨方式,即某種物資在單位時間的需求量為某常數(shù),經(jīng)過某段時間后,存儲量消耗下降到零,此時開始訂貨并隨即到貨,然后開始下一個存儲周期,該模型適用于整批間隔進(jìn)貨、不允許缺貨的存儲問題,具體如下:年存儲成本費(fèi)(元)關(guān)于每次訂貨(單位)的函數(shù)關(guān)系,其中為年需求量,為每單位物資的年存儲費(fèi),為每次訂貨費(fèi). 某化工廠需用甲醇作為原料,年需求量為6000噸,每噸存儲費(fèi)為120元/年,每次訂貨費(fèi)為2500元.

(1)若該化工廠每次訂購300噸甲醇,求年存儲成本費(fèi);

(2)每次需訂購多少噸甲醇,可使該化工廠年存儲成本費(fèi)最少?最少費(fèi)用為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《易經(jīng)》是中國傳統(tǒng)文化中的精髓,下圖是易經(jīng)八卦圖(含乾、坤、巽、震、坎、離、艮、兌八卦),每卦有三根線組成(“”表示一根陽線,“”表示一根陰線),從八卦中任取兩卦,這兩卦的六根線中恰有三根陽線和三根陰線的概率__________

查看答案和解析>>

同步練習(xí)冊答案