【題目】已知函數(shù)在區(qū)間上是單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍為(  )

A. B. C. D.

【答案】B

【解析】, ,上恒成立,設(shè),則,再令,則,上恒成立,∴上為增函數(shù),

上恒成立,∴上減函數(shù),∴,實(shí)數(shù)的取值范圍為故選B.

【方法點(diǎn)晴】本題主要考查“分離參數(shù)”在解題中的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及利用單調(diào)性求參數(shù)的范圍,屬于中檔題. 利用單調(diào)性求參數(shù)的范圍的常見方法:① 視參數(shù)為已知數(shù),依據(jù)函數(shù)的圖象或單調(diào)性定義,確定函數(shù)的單調(diào)區(qū)間,與已知單調(diào)區(qū)間比較求參數(shù)需注意若函數(shù)在區(qū)間上是單調(diào)的,則該函數(shù)在此區(qū)間的任意子集上也是單調(diào)的; ② 利用導(dǎo)數(shù)轉(zhuǎn)化為不等式恒成立問題求參數(shù)范圍,本題是利用方法 ② 求解的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是ABAA1的中點(diǎn).

求證:(1)E、C、D1、F四點(diǎn)共面;

(2)CE、D1F、DA三線共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn,且3anSn4(nN*).

(1)證明:{an}是等比數(shù)列;

(2)anan1之間插入n個(gè)數(shù),使這n2個(gè)數(shù)成等差數(shù)列.記插入的n個(gè)數(shù)的和為Tn,求Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線M的參數(shù)方程為 (θ為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線N的極坐標(biāo)方程為ρsin(θ+)=t(其中t為常數(shù)).

(Ⅰ)若曲線N與曲線M只有一個(gè)公共點(diǎn),求t的值;

(Ⅱ)當(dāng)t=-1時(shí),求曲線M上的點(diǎn)與曲線N上的點(diǎn)的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若對(duì)任意的實(shí)數(shù)x,f(x)-|x|≤a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且2acosA=bcosC+ccosB.

(Ⅰ)求A的大小;

(Ⅱ)若a=2,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)f(x)的最小值;

(2)已知m∈R,p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立,q:函數(shù)y=(m2-1)x是增函數(shù),若p正確,q錯(cuò)誤,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(導(dǎo)學(xué)號(hào):05856266)[選修4-5:不等式選講]

設(shè)函數(shù)f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形平面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案