【題目】已知函數(shù)是定義在上的偶函數(shù),且,若函數(shù)6 個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

【答案】D

【解析】

函數(shù)F(x)=f(x)﹣m有六個(gè)零點(diǎn)等價(jià)于當(dāng)x0時(shí),函數(shù)F(x)=f(x)﹣m有三個(gè)零點(diǎn),

即可即m=f(x)有3個(gè)不同的解,求出在每一段上的f(x)的值域,即可求出m的范圍.

函數(shù)f(x)是定義在R上的偶函數(shù),函數(shù)F(x)=f(x)﹣m有六個(gè)零點(diǎn),

則當(dāng)x0時(shí),函數(shù)F(x)=f(x)﹣m有三個(gè)零點(diǎn),

F(x)=f(x)﹣m=0,

m=f(x),

①當(dāng)0x2時(shí),f(x)=x﹣x2=﹣(x﹣2+

當(dāng)x=時(shí)有最大值,即為f()=,

f(x)f(2)=2﹣4=﹣2,

f(x)在[0,2)上的值域?yàn)椋ī?/span>2,),

②當(dāng)x2時(shí),f(x)=0,且當(dāng)x→+∞,f(x)→0,

f′(x)=,

f′(x)==0,解得x=3,

當(dāng)2x3時(shí),f′(x)0,f(x)單調(diào)遞減,

當(dāng)x3時(shí),f′(x)0,f(x)單調(diào)遞增,

f(x)min=f(3)=﹣,

f(x)在[2,+∞)上的值域?yàn)閇,0),

﹣2,

∴當(dāng)﹣m0時(shí),當(dāng)x0時(shí),函數(shù)F(x)=f(x)﹣m有三個(gè)零點(diǎn),

故當(dāng)﹣m0時(shí),函數(shù)F(x)=f(x)﹣m有六個(gè)零點(diǎn),

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=sinx,gx)=lnx

1)求方程[0,2π]上的解;

2)求證:對(duì)任意的aR,方程fx)=agx)都有解;

3)設(shè)M為實(shí)數(shù),對(duì)區(qū)間[02π]內(nèi)的滿足x1x2x3x4的任意實(shí)數(shù)xi1i4),不等式成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)

(1)求曲線、的直角坐標(biāo)方程;

(2)若點(diǎn)在曲線上的兩個(gè)點(diǎn)且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果是拋物線上的點(diǎn),它們的橫坐標(biāo)依次為是拋物線的焦點(diǎn),若,則_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若曲線和曲線有三個(gè)公共點(diǎn),求以這三個(gè)點(diǎn)為頂點(diǎn)的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正六棱錐的底面邊長(zhǎng)為,高為.現(xiàn)從該棱錐的個(gè)頂點(diǎn)中隨機(jī)選取個(gè)點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量表示所得三角形的面積.

(1)求概率的值;

(2)求的分布列,并求其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,曲線C由以原點(diǎn)為圓心,半徑為2的半圓和中心在原點(diǎn),焦點(diǎn)在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.

(1)寫(xiě)出曲線C的極坐標(biāo)方程;

(2)已知射線與曲線C交于點(diǎn)M,點(diǎn)N為曲線C上的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案