【題目】已知函數(shù)f(x)=sinx,g(x)=lnx.
(1)求方程在[0,2π]上的解;
(2)求證:對任意的a∈R,方程f(x)=ag(x)都有解;
(3)設(shè)M為實(shí)數(shù),對區(qū)間[0,2π]內(nèi)的滿足x1<x2<x3<x4的任意實(shí)數(shù)xi(1≤i≤4),不等式成立,求M的最小值.
【答案】(1)或;(2)詳見解析;(2)
【解析】
(1)利用誘導(dǎo)公式化簡,結(jié)合同角三角函數(shù)的基本關(guān)系式求得的值,由此求得方程的解.
(2)將分成和兩種情況,結(jié)合零點(diǎn)存在性證得結(jié)論成立.
(3)先證得,再證得,由此求得的最小值為.
(1)因?yàn)椋?/span>,所以,即,且.若,則,與矛盾.所以,從而.又,所以或.
(2)當(dāng)時(shí),由得,即是該方程的一個(gè)解;
當(dāng)時(shí),令.因?yàn)?/span>的圖像在區(qū)間上連續(xù)不斷,且,,根據(jù)零點(diǎn)存在性定理可知,存在,使得.因此,當(dāng)時(shí),方程有解.
綜上所述,對任意,方程都有解.
(3)先證:.
取,.
再證:當(dāng)時(shí),都有,即.
①若,因?yàn)?/span>,于是,所以,而,所以.
②若,,,所以;
③若,,,所以,
于是對任意滿足條件的,都有.
綜上所述,的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線和虛線畫出的是某幾何體的三視圖,則該幾何休的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.
(Ⅰ)求函數(shù)的解析式和當(dāng)時(shí)的單調(diào)減區(qū)間;
(Ⅱ)的圖象向右平行移動個(gè)長度單位,再向下平移1個(gè)長度單位,得到的圖象,用“五點(diǎn)法”作出在內(nèi)的大致圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)有兩個(gè)極值點(diǎn),,且.
()求的取值范圍,并討論的單調(diào)性.
()證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長與底面多邊形的邊長都相等,則該棱錐可能是六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲和乙玩一個(gè)猜數(shù)游戲,規(guī)則如下:已知六張紙牌上分別寫有1﹣六個(gè)數(shù)字,現(xiàn)甲、乙兩人分別從中各自隨機(jī)抽取一張,然后根據(jù)自己手中的數(shù)推測誰手上的數(shù)更大.甲看了看自己手中的數(shù),想了想說:我不知道誰手中的數(shù)更大;乙聽了甲的判斷后,思索了一下說:我知道誰手中的數(shù)更大了.假設(shè)甲、乙所作出的推理都是正確的,那么乙手中可能的數(shù)構(gòu)成的集合是_____
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù)滿足對于任意實(shí)數(shù),都有,且當(dāng)時(shí),,.
(1)判斷的奇偶性并證明;
(2)判斷的單調(diào)性,并求當(dāng)時(shí),的最大值及最小值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且,若函數(shù)有 6 個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com