【題目】祖暅?zhǔn)俏覈媳背瘯r代的偉大科學(xué)家,他在實踐的基礎(chǔ)上提出了體積計算的原理:冪勢既同,則積不容異,稱為祖暅原理.意思是底面處于同一平面上的兩個同高的幾何體,若在等高處的截面面積始終相等,則它們的體積相等.利用這個原理求半球O的體積時,需要構(gòu)造一個幾何體,該幾何體的三視圖如圖所示,則該幾何體的體積為_____,表面積為_____

【答案】 3π

【解析】

根據(jù)給定的幾何體的三視圖,得到該幾何體為一個圓柱挖去一個圓錐,得出圓柱的底面半徑和高,利用體積和側(cè)面積、以及圓的公式,即可求解.

根據(jù)給定的幾何體的三視圖,可得該幾何體表示一個圓柱挖去一個圓錐,

且底面半徑1,高為1的組合體,

所以幾何體的體積為:

幾何體的表面積為:3π

故答案為:,(3π

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,已知側(cè)面,,點在棱上.

)求證:平面

)試確定點的位置,使得二面角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形為矩形, ,的中點,沿折起,得到四棱錐,設(shè)的中點為,在翻折過程中,得到如下有三個命題:

平面,且的長度為定值;

三棱錐的最大體積為;

③在翻折過程中,存在某個位置,使得.

其中正確命題的序號為__________.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個多面體的三視圖正視圖、側(cè)視圖、俯視圖如圖所示,M,N分別是,的中點.

1)求證:平面;

2)求證:平面

3)若這個多面體的六個頂點A,B,C,,,都在同一個球面上,求這個球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求的最小值.

(Ⅱ)若在區(qū)間上有兩個極值點,

(i)求實數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,且a2+2a4a9,S636

1)求an,Sn;

2)若數(shù)列{bn}滿足b11,,求證:nN*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】請解答以下問題,要求解決兩個問題的方法不同.

1)如圖1,要在一個半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.

2)如圖2,要在一個長半軸為2米,短半軸為1米的半個橢圓鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)中,內(nèi)角A,B,C所對的邊分別為ab,c,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C+y2=1,不與坐標(biāo)軸垂直的直線l與橢圓C相交于M,N兩點.

(1)若線段MN的中點坐標(biāo)為 (1,),求直線l的方程;

(2)若直線l過點Pp,0),點Qq,0)滿足kQM+kQN=0,求pq的值.

查看答案和解析>>

同步練習(xí)冊答案