精英家教網 > 高中數學 > 題目詳情

【題目】四面體及其三視圖如圖所示,過棱的中點作平行于、的平面分別交四面體的棱、、于點、

(1)求證:四邊形是矩形;

(2)求點到面的距離.

【答案】(1)詳見解析(2)

【解析】

1)由三視圖得到四面體ABCD的具體形狀,然后利用線面平行的性質得到四邊形EFGH的兩組對邊平行,即可得到四邊形為平行四邊形,再由線面垂直的判定和性質得到,結合異面直線所成角的概念得到,從而證得結論;

2)利用線面平行時,直線上的點到平面的距離是相等的,將點到面的距離轉化為點D到面的距離,求解即可.

(1)證明:由,同理可得

所以

的面,同理可得

所以

所以四邊形是平行四邊形

由三視圖可知,所以,又

所以,所以四邊形是矩形

(2)易知點到面的距離即點到面的距離,

所以點到面的距離即點到線的距離

由(1)和的中點可知、分別是、的中點,

又由三視圖可知是等腰直角三角形,

易得點到線的距離為,即點到面的距離

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數是定義在(-1,1)上的奇函數,且

(1)求函數的解析式;

(2)證明函數fx)在(-1,1)上是增函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為空間中兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與,都垂直,斜邊以直線為旋轉軸旋轉,有下列結論:

(1)當直線角時,角;

(2)當直線角時,角;

(3)直線所成角的最小值為;

(4)直線所成角的最小值為

其中正確的是______(填寫所有正確結論的編號).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某校甲、乙、丙三個年級的學生志愿者人數分別是240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學去某敬老院參加獻愛心活動。

(1)應從甲、乙、丙三個年級的學生志愿者中分別抽取多少人?

(2)設抽出的7名同學分別用A,B,C,D,E,F(xiàn),G表示,現(xiàn)從中隨機抽取2名同學承擔敬老院的衛(wèi)生工作,求事件M“抽取的2名同學來自同一年級”發(fā)生的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校為了解高三年級學生寒假期間的學習情況,抽取甲、乙兩班,調查這兩個班的學生在寒假期間每天平均學習的時間(單位:小時),統(tǒng)計結果繪成頻率分別直方圖(如圖).已知甲、乙兩班學生人數相同,甲班學生每天平均學習時間在區(qū)間的有8人.

I)求直方圖中的值及甲班學生每天平均學習時間在區(qū)間的人數;

II)從甲、乙兩個班每天平均學習時間大于10個小時的學生中任取4人參加測試,設4人中甲班學生的人數為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩位學生參加數學競賽培訓現(xiàn)分別從他們在培訓期間參加的若干次預賽成績中隨機抽取記錄如下:

甲: , , , , ,

乙: , , , , , ,

用莖葉圖表示這兩組數據.

)現(xiàn)要從中選派一人參加數學競賽,從統(tǒng)計學的角度考慮,你認為派哪位學生參加合適?請說明理由

)若將頻率視為概率,對甲同學在今后的三次數學競賽成績進行預測,記這次成績中高于分的次數為,求的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】學校某研究性學習小組在對學生上課注意力集中情況的調查研究中,發(fā)現(xiàn)其在40分鐘的一節(jié)課中,注意力指數y與聽課時間x(單位:分鐘)之間的關系滿足如圖所示的圖象,當x∈(0,12]時,圖象是二次函數圖象的一部分,其中頂點A(10,80),過點B(12,78);當x∈[12,40]時,圖象是線段BC,其中C(40,50).根據專家研究,當注意力指數大于62時,學習效果最佳.

(1)試求y=f(x)的函數關系式;

(2)教師在什么時段內安排內核心內容,能使得學生學習效果最佳?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓,圓,動圓與圓外切并且與圓內切,圓心軌跡為曲線

(1)求曲線的方程;

(2)若是曲線上關于軸對稱的兩點,點,直線交曲線

于另一點,求證:直線過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平行六面體ABCDA1B1C1D1中,AA1⊥平面ABCD,且ABAD=2,AA1,∠BAD=120°.

(1)求異面直線A1BAC1所成角的余弦值;

(2)求二面角BA1DA的正弦值.

查看答案和解析>>

同步練習冊答案