【題目】,為空間中兩條互相垂直的直線,等腰直角三角形的直角邊所在直線與,都垂直,斜邊以直線為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
(1)當(dāng)直線與成角時,與成角;
(2)當(dāng)直線與成角時,與成角;
(3)直線與所成角的最小值為;
(4)直線與所成角的最小值為;
其中正確的是______(填寫所有正確結(jié)論的編號).
【答案】(1)(3)
【解析】
由題意知,a、b、AC三條直線兩兩相互垂直,構(gòu)建如圖所示的邊長為1的正方體,|AC|=1,|AB|,斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果.
由題意知,a、b、AC三條直線兩兩相互垂直,畫出圖形如圖,
不妨設(shè)圖中所示正方體邊長為1,
故|AC|=1,|AB|,
斜邊AB以直線AC為旋轉(zhuǎn)軸,則A點(diǎn)保持不變,
B點(diǎn)的運(yùn)動軌跡是以C為圓心,1為半徑的圓,
以C坐標(biāo)原點(diǎn),以CD為x軸,CB為y軸,CA為z軸,建立空間直角坐標(biāo)系,
則D(1,0,0),A(0,0,1),直線a的方向單位向量(0,1,0),||=1,
直線b的方向單位向量(1,0,0),||=1,
設(shè)B點(diǎn)在運(yùn)動過程中的坐標(biāo)中的坐標(biāo)B′(cosθ,sinθ,0),
其中θ為B′C與CD的夾角,θ∈[0,2π),
∴AB′在運(yùn)動過程中的向量為(cosθ,sinθ,﹣1),||,
設(shè)與所成夾角為α∈[0,],
則cosα|sinθ|∈[0,],
∴α∈[,],∴(3)正確,(4)錯誤.
設(shè)與所成夾角為β∈[0,],
cosβ|cosθ|,
當(dāng)與夾角為60°時,即α,
|sinθ|,
∵cos2θ+sin2θ=1,∴cosβ|cosθ|,
∵β∈[0,],∴β,此時與的夾角為60°,
∴(1)正確,(2)錯誤.
故答案為:(1)(3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差
①班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
②班數(shù)學(xué)興趣小組的平均成績高于班的平均成績
③班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
④班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差
其中正確結(jié)論的編號為( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓,且點(diǎn)到橢圓C的兩焦點(diǎn)的距離之和為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 若,是橢圓上的兩個點(diǎn),線段的中垂線的斜率為,且直線與交于點(diǎn),求證:點(diǎn)在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面,底面是平行四邊形, , , , 為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證: ;
(Ⅱ)試確定點(diǎn)的位置,使得直線與平面所成的角和直線與平面所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a,.
當(dāng)時,若在處取得極小值,求a的值;
當(dāng)時.
若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍;
若存在實(shí)數(shù),使得,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓與圓內(nèi)切,與圓外切,記圓心的軌跡為曲線.
(1)求曲線的方程.
(2)直線與曲線交于點(diǎn),,點(diǎn)為線段的中點(diǎn),若,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:an+1-an=d(n∈N*),前n項(xiàng)和記為Sn,a1=4,S3=21.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足b1=,bn+1-bn=2an,求數(shù)列{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四面體及其三視圖如圖所示,過棱的中點(diǎn)作平行于、的平面分別交四面體的棱、、于點(diǎn)、、.
(1)求證:四邊形是矩形;
(2)求點(diǎn)到面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于, 兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com