【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調區(qū)間與極值

2)若fx≥gx恒成立,求實數(shù)a的取值范圍.

【答案】(1) 函數(shù)f(x)的單調增區(qū)間為,單調減區(qū)間為.

f(x)的極大值為6,極小值-26;(2)

【解析】試題分析:(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,即可得到函數(shù)f(x)的單調區(qū)間與極值;(2)根據(jù)函數(shù)的單調性求出端點值和極值,從而求出f(x)的最小值,得到關于a的不等式,求出a的范圍即可.

試題解析:

(1)令,解得

,解得:.

故函數(shù)的單調增區(qū)間為,單調減區(qū)間為.

f(x)的極大值為f(-1)=6,極小值f(3)=-26

(2)由(1)知上單調遞增,在上單調遞減,在上單調遞增,

,

,

恒成立,

,即,∴

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,其中向量 (x∈R),
(1)求函數(shù)y=f(x)的單調遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別為a、b、c,已知f (A)=2,a= ,b= ,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為正方形, 底面, 為棱的中點.

1)證明:

2)求直線與平面所成角的正弦值;

3)若中點,棱上是否存在一點,使得,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1的對角線AC1上任取一點P,以A為球心,AP為半徑作一個球.設AP=x,記該球面與正方體表面的交線的長度和為f(x),則函數(shù)f(x)的圖象最有可能的是(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)當甲城市投資50萬元時,求此時公司總收益;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某學校高三年級共名男生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于之間,將測量結果按如下方式分成八組,第一組;第二組,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構成等差數(shù)列.

)估計這所學校高三年級全體男生身高以上(含)的人數(shù).

)求第六組、第七組的頻率并補充完整頻率分布直方圖(鉛筆作圖并用中性筆描黑).

)若從身高屬于第六組和第八組的所有男生中隨機抽取兩名男生,記他們的身高分別為,求滿足的事件概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校有兩個參加國際中學生交流活動的代表名額,為此該學校高中部推薦2男1女三名候選人,初中部也推薦了1男2女三名候選人。若從6名學生中人選2人做代表。

求:(1)選出的2名同學來自不同年相級部且性別同的概率;

(2)選出的2名同學都來自高中部或都來自初中部的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為,且橢圓經(jīng)過.

(1)求橢圓的方程;

(2)是否存在實數(shù),使直線與橢圓有兩個不同交點,且為坐標原點),若存在,求出的值.不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段 的中點.

(1)求證: ||平面;

(2)四棱柱的外接球的表面積為,求異面直線所成的角的大小.

查看答案和解析>>

同步練習冊答案