【題目】過拋物線y2=4x的焦點(diǎn)F的直線交該拋物線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).若|AF|=3,則△AOB的面積為( )

A. B. C. D.

【答案】C

【解析】【解法1】設(shè)∠AFx=θ(0<θ<π)及|BF|=m,∵|AF|=3,∴點(diǎn)A到準(zhǔn)線l:x=-1的距離為3
∴2+3cosθ=3∴cosθ=,∵m=2+mcos(π-θ),∴,

∴△AOB的面積為S=×××sinθ=×1×(3+)×.故選(C)

【解法2】如圖,設(shè)A.易知拋物線y2=4x的焦點(diǎn)為F,

準(zhǔn)線為x=-1,故由拋物線的定義得x0=3,解得x0=2,

所以y0=-2,故A.則直線AB斜率為k=-2,

直線AB的方程為y=-2x+2,聯(lián)立

消去y得2x2-5x+2=0,由x1x2=1,得A,B兩點(diǎn)橫坐標(biāo)之積為1,所以點(diǎn)B的橫坐標(biāo)為.

再由拋物線的定義得,=3+.

又因?yàn)辄c(diǎn)O到直線AB的距離為d,所以SAOB××.故選(C)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面有五個(gè)命題:
①函數(shù)y=sin4θ﹣cos4θ的最小正周期是π;
②終邊在y軸上的角的集合是 ;
③把 的圖象向右平移 得到y(tǒng)=3sin2x的圖象;
④函數(shù) 在[0,π]是減函數(shù);
其中真命題的序號是(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)對于任意實(shí)數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時(shí),解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)團(tuán)委組織了“弘揚(yáng)奧運(yùn)精神,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100〕后畫出如圖所示的頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

(1)求第四小組的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(2)估計(jì)這次考試的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)。

1)若fx)的圖象與gx)的圖象所在兩條曲線的一個(gè)公共點(diǎn)在y軸上,且在該點(diǎn)處兩條曲線的切線互相垂直,求bc的值。

2)若ac1,b0,試比較fx)與gx)的大小,并說明理由;

3)若bc0,證明:對任意給定的正數(shù)a,總存在正數(shù)m,使得當(dāng)x時(shí),

恒有fx)>gx)成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足:a1= ,a1 , a2 , a3 成等差數(shù)列,公比q∈(0,1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2nan , 求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.

(Ⅰ)求證:圓心O在直線AD上;

(Ⅱ)求證:點(diǎn)C是線段GD的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC中一定是(
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn).

(1)求證:AC1∥平面CDB1
(2)求證:AC⊥BC1
(3)求直線AB1與平面BB1C1C所成的角的正切值.

查看答案和解析>>

同步練習(xí)冊答案