設(shè)數(shù)列的前項(xiàng)和為,且滿(mǎn)足.
(1)求數(shù)列的通項(xiàng)公式;
(2)在數(shù)列的每?jī)身?xiàng)之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項(xiàng)之間插入個(gè)數(shù),使這個(gè)數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項(xiàng)和為.

(1);(2).

解析試題分析:(1)一般已知,則兩式相減求出;(2)利用錯(cuò)位相減法求和.
試題解析:(1)當(dāng)時(shí),,∴.     (2分)
當(dāng)時(shí),又,∴,即,
是以1為首項(xiàng),2為公比的等比數(shù)列,故.       (6分)
(2)由(1)得,則,∴,,  (8分)
,,          (10分)
兩式相減得:,
.                            (13分)
考點(diǎn):數(shù)列的通項(xiàng)公式,數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且、成等比數(shù)列.
(1)求、的值;
(2)若數(shù)列滿(mǎn)足,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正項(xiàng)數(shù)列滿(mǎn)足:.
(1)求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng),且點(diǎn)在直線(xiàn)上.
(1)求數(shù)列,的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式;      (2)求的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是函數(shù)的圖像上一點(diǎn),等比數(shù)列的前項(xiàng)的和為;數(shù)列的首項(xiàng)為,且前項(xiàng)和滿(mǎn)足.
求數(shù)列的通項(xiàng)公式;
若數(shù)列的前項(xiàng)和為,問(wèn)的最小正整數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為已知
(Ⅰ)設(shè)證明:數(shù)列是等比數(shù)列;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

觀察下列三角形數(shù)表:
第一行                 
第二行                
第三行                
第四行                
第五行               
………………………………………….
假設(shè)第行的第二個(gè)數(shù)為.
(1)依次寫(xiě)出第八行的所有8個(gè)數(shù)字;
(2)歸納出的關(guān)系式,并求出的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且。數(shù)列滿(mǎn)足,
,。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,求使不等式對(duì)一切都成立的最大正整數(shù)的值;
(3)設(shè),是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案