【題目】某商場推出消費抽現(xiàn)金活動,顧客消費滿1000元可以參與一次抽獎,該活動設(shè)置了一等獎、二等獎、三等獎以及參與獎,獎金分別為:一等獎200元、二等獎100元、三等獎50元、參與獎20元,具體獲獎人數(shù)比例分配如圖,則下列說法中錯誤的是( )
A.獲得參與獎的人數(shù)最多
B.各個獎項中一等獎的總金額最高
C.二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍
D.獎金平均數(shù)為元
【答案】B
【解析】
由于各獲獎人數(shù)所占總獲獎人數(shù)的百分比的比例關(guān)系與各獲獎人數(shù)的比例關(guān)系一致,即可判斷A,C;設(shè)獲獎人數(shù)為,分別求得各獎項的總金額,即可判斷B;利用平均數(shù)的公式求解平均數(shù),即可判斷D.
由圖可知,獲得參與獎的人數(shù)占獲獎人數(shù)的55%,是最多的,故A正確;
假設(shè)獲獎人數(shù)為,則一等獎總金額為,二等獎總金額為,
三等獎總金額為,參與獎總金額為,
所以三等獎總金額是最高的,故B錯誤;
二等獎獲獎人數(shù)占獲獎人數(shù)的10%,一等獎獲獎人數(shù)占獲獎人數(shù)的5%,
即二等獎獲獎人數(shù)是一等獎獲獎人數(shù)的兩倍,故C正確;
由圖,可得獎金平均數(shù)為元,故D正確;
故選:B
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,拋物線上的點到準線的最小距離為.
(1)求拋物線的方程;
(2)若過點作互相垂直的兩條直線、,與拋物線交于兩點,與拋物線交于兩點,分別為弦的中點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)則x∈[﹣1,e]時,f(x)的最小值為_____;設(shè)g(x)=[f(x)]2﹣f(x)+a若函數(shù)g(x)有6個零點,則實數(shù)a的取值范圍是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】區(qū)塊鏈技術(shù)被認為是繼蒸汽機、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機器,將可能徹底改變整個人類社會價值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表
年份 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 |
企業(yè)總數(shù)量y(單位:千個) | 2.156 | 3.727 | 8.305 | 24.279 | 36.224 |
注:參考數(shù)據(jù)(其中z=lny).
附:樣本(xi,yi)(i=1,2,…,n)的最小二乘法估計公式為
(1)根據(jù)表中數(shù)據(jù)判斷,y=a+bx與y=cedx(其中e=2.71828…,為自然對數(shù)的底數(shù)),哪一個回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)
(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點后第三位);
(3)為了促進公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個公司參加,并決出勝負;②每場比賽獲勝的公司與未參加此場比賽的公司進行下一場的比賽;③在比賽中,若有一個公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計算說明,哪兩個公司進行首場比賽時,甲公司獲得“優(yōu)勝公司”的概率最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線,曲線(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在定義域內(nèi)的極值點的個數(shù);
(2)若對,恒成立,求實數(shù)的取值范圍;
(3)證明:若,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)設(shè)是函數(shù)的導(dǎo)函數(shù),求的單調(diào)區(qū)間;
(2)證明:當時,在區(qū)間上有極大值點,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,有下列4個命題:
①若,則的圖象關(guān)于直線對稱;
②與的圖象關(guān)于直線對稱;
③若為偶函數(shù),且,則的圖象關(guān)于直線對稱;
④若為奇函數(shù),且,則的圖象關(guān)于直線對稱.
其中正確的命題為 .(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com