【題目】區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表

年份

2015

2016

2017

2018

2019

編號(hào)

1

2

3

4

5

企業(yè)總數(shù)量y(單位:千個(gè))

2.156

3.727

8.305

24.279

36.224

注:參考數(shù)據(jù)(其中zlny).

附:樣本(xi,yi)(i12,n)的最小二乘法估計(jì)公式為

1)根據(jù)表中數(shù)據(jù)判斷,ya+bxycedx(其中e2.71828…,為自然對數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)

2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程(結(jié)果精確到小數(shù)點(diǎn)后第三位);

3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場比賽有兩個(gè)公司參加,并決出勝負(fù);②每場比賽獲勝的公司與未參加此場比賽的公司進(jìn)行下一場的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場,則本次比賽結(jié)束,該公司就獲得此次信息化比賽的優(yōu)勝公司,已知在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,請通過計(jì)算說明,哪兩個(gè)公司進(jìn)行首場比賽時(shí),甲公司獲得優(yōu)勝公司的概率最大?

【答案】1)選ycedx;(2;(3)甲與丙兩公司進(jìn)行首場比賽時(shí),甲公司獲得優(yōu)勝公司的概率大

【解析】

1)直接由表中數(shù)據(jù)可得選擇回歸方程ycedx,適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量;

2)對ycedx兩邊取自然對數(shù),得lnylnc+dx,轉(zhuǎn)化為線性回歸方程求解;

3)對于首場比賽的選擇有以下三種情況:A、甲與乙先賽;B、甲與丙先賽;C、丙與乙先賽,由已知結(jié)合互斥事件與相互獨(dú)立事件的概率計(jì)算公式分別求得甲公司獲得優(yōu)勝公司的概率得結(jié)論.

1)選擇回歸方程ycedx,適宜預(yù)測未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量;

2)對ycedx兩邊取自然對數(shù),得lnylnc+dx,

zlnyalnc,bd,得za+bx

由于,

0.752

z關(guān)于x的回歸方程為,

y關(guān)于x的回歸方程為;

3)對于首場比賽的選擇有以下三種情況:

A、甲與乙先賽;B、甲與丙先賽;C、丙與乙先賽.

由于在每場比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為

則甲公司獲勝的概率分別是:

PA;

PB

PC

由于,

∴甲與丙兩公司進(jìn)行首場比賽時(shí),甲公司獲得優(yōu)勝公司的概率大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過橢圓的左、右焦點(diǎn)和短軸的端點(diǎn)(點(diǎn)在點(diǎn)上方).為圓上的動(dòng)點(diǎn)(點(diǎn)不與重合),直線分別與橢圓交于點(diǎn),其中點(diǎn)構(gòu)成四邊形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

1)求曲線與曲線的公共點(diǎn)的極坐標(biāo);

2)若點(diǎn)的極坐標(biāo)為,設(shè)曲線軸相交于點(diǎn),則在曲線上是否存在點(diǎn),使得,若存在,求出點(diǎn)的直角坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且以橢圓上的點(diǎn)和長軸兩端點(diǎn)為頂點(diǎn)的三角形的面積的最大值為.

1)求橢圓的方程;

2)經(jīng)過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、,點(diǎn)關(guān)于軸的對稱點(diǎn)為,試證明:直線軸的交點(diǎn)為一個(gè)定點(diǎn),且為原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》是中國古代重要的數(shù)學(xué)著作,其記載的日月歷法曰:陰陽之?dāng)?shù),日月之法,十九歲為一章,四章為一部,部七十六歲,二十部為一遂,遂千百五二十歲,.生數(shù)皆終,萬物復(fù)蘇,天以更元作紀(jì)歷,某老年公寓住有20位老人,他們的年齡(都為正整數(shù))之和恰好為一遂,其中年長者已是奔百之齡(年齡介于90100),其余19人的年齡依次相差一歲,則年長者的年齡為( )

A.94B.95C.96D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場推出消費(fèi)抽現(xiàn)金活動(dòng),顧客消費(fèi)滿1000元可以參與一次抽獎(jiǎng),該活動(dòng)設(shè)置了一等獎(jiǎng)、二等獎(jiǎng)、三等獎(jiǎng)以及參與獎(jiǎng),獎(jiǎng)金分別為:一等獎(jiǎng)200元、二等獎(jiǎng)100元、三等獎(jiǎng)50元、參與獎(jiǎng)20元,具體獲獎(jiǎng)人數(shù)比例分配如圖,則下列說法中錯(cuò)誤的是(

A.獲得參與獎(jiǎng)的人數(shù)最多

B.各個(gè)獎(jiǎng)項(xiàng)中一等獎(jiǎng)的總金額最高

C.二等獎(jiǎng)獲獎(jiǎng)人數(shù)是一等獎(jiǎng)獲獎(jiǎng)人數(shù)的兩倍

D.獎(jiǎng)金平均數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科研團(tuán)隊(duì)對例新冠肺炎確診患者的臨床特征進(jìn)行了回顧性分析.其中名吸煙患者中,重癥人數(shù)為人,重癥比例約為;名非吸煙患者中,重癥人數(shù)為人,重癥比例為.

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表;

2)根據(jù)(1)中列聯(lián)表數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為新冠肺炎重癥與吸煙有關(guān)?

3)已知每例重癥患者平均治療費(fèi)用約為萬元,每例輕癥患者平均治療費(fèi)用約為萬元.根據(jù)(1)中列聯(lián)表數(shù)據(jù),分別求吸煙患者和非吸煙患者的平均治療費(fèi)用.(結(jié)果保留兩位小數(shù))

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,M,NP分別是C1D1,BC,A1D1的中點(diǎn),有下列四個(gè)結(jié)論:

APCM是異面直線;②APCM,DD1相交于一點(diǎn);③MNBD1;

MN∥平面BB1D1D

其中所有正確結(jié)論的編號(hào)是( 。

A.①④B.②④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面ABC,平面平面PBC,,

1)證明:平面PBC;

2)求點(diǎn)C到平面PBA的距離.

查看答案和解析>>

同步練習(xí)冊答案