【題目】已知圓與拋物線的準線交于兩點,且

(1)求拋物線的方程;

(2)若直線與曲線交于,兩點,且曲線上存在兩點,關(guān)于直線對稱,求實數(shù)的取值范圍及的取值范圍.

【答案】1;(2)實數(shù)的取值范圍為,的取值范圍是

【解析】

1)設(shè)圓心到準線的距離為,求得,再結(jié)合圓的弦長公式,求得,即可得到拋物線的方程;

2)聯(lián)立方程組,根據(jù),解得,且,,求得,設(shè)直線方程為,聯(lián)立方程組,求得,求得的表達式,即可求解.

1)由題意,圓的半徑,圓心為,

設(shè)圓心到準線的距離為,則,

又由,可得,

故拋物線的方程為

2)聯(lián)立方程組,可得,

因為直線與曲線交與兩點,所以,解得,①

設(shè),,則,

所以,

因為點,關(guān)于直線對稱,設(shè)直線方程為,

直線,聯(lián)立得,

,得,

設(shè),中點,則,

因為點也在直線上,所以

所以,代入,②

由①②得,實數(shù)的取值范圍為

又因為,

所以

因為,所以,所以

所以的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形且,側(cè)面底面,且側(cè)面是正三角形,中點.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究一種昆蟲的產(chǎn)卵數(shù)和溫度是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了如圖的散點圖.

溫度/

20

22

24

26

28

30

32

產(chǎn)卵數(shù)/

6

10

22

26

64

118

310

26

794

358

112

116

2340

3572

其中

1)根據(jù)散點圖判斷,哪一個更適宜作為該昆蟲的產(chǎn)卵數(shù)與溫度的回歸方程類型?(給出判斷即可,不必說明理由).

2)根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;(保留兩位有效數(shù)字)

3)根據(jù)關(guān)于的回歸方程,估計溫度為33℃時的產(chǎn)卵數(shù).

(參考數(shù)據(jù):

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解學(xué)生使用手機的情況,分別在高一和高二兩個年級各隨機抽取了100名學(xué)生進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機時間的頻數(shù)分布表和頻率分布直方圖,將使用手機時間不低于80分鐘的學(xué)生稱為“手機迷”.

I)將頻率視為概率,估計哪個年級的學(xué)生是“手機迷”的概率大?請說明理由.

II)在高二的抽查中,已知隨機抽到的女生共有55名,其中10名為“手機迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認為“手機迷”與性別有關(guān)?

非手機迷

手機迷

合計

合計

附:隨機變量(其中為樣本總量).

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

span>2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等比數(shù)列的公比大于,其前項和為,是等差數(shù)列,已知,,.

1)求,的通項公式

2)設(shè),數(shù)列的前項和為,求;

3)設(shè),其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)滿足以下三個條件:①對于任意的,都有;②對于任意的都有③函數(shù)的圖象關(guān)于y軸對稱,則下列結(jié)論中正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,西安公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統(tǒng)計了活動剛推出一周內(nèi)每一天使用掃碼支付的人次,表示活動推出的天數(shù),表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計數(shù)據(jù)如表下所示:

根據(jù)以上數(shù)據(jù),繪制了散點圖.

1)根據(jù)散點圖判斷,在推廣期內(nèi),均為大于零的常數(shù)),哪一個適宜作為掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),建立的回歸方程,并預(yù)測活動推出第8天使用掃碼支付的人次;

3)推廣期結(jié)束后,車隊對乘客的支付方式進行統(tǒng)計,結(jié)果如下表:

西安公交六公司車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據(jù)以往的經(jīng)驗可知,每輛車每個月的運營成本約為萬元.已知該線路公交車票價為元,使用現(xiàn)金支付的乘客無優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計該車隊每輛車每個月有萬人次乘車,根據(jù)所給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費標(biāo)準,假設(shè)這批車需要)年才能開始盈利,求的值.

參考數(shù)據(jù):

其中其中,,

參考公式:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若函數(shù)在區(qū)間為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;

(2)若在為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小姜同學(xué)有兩個盒子,最初盒子6枚硬幣,盒子是空的.在每一回合中,她可以將一枚硬幣從盒移到盒,或者從盒移走枚硬幣,其中盒中當(dāng)前的硬幣數(shù).當(dāng)盒空時她獲勝.則小姜可以獲勝的最少回合是( )

A.三回合B.四回合C.五回合D.六回合

查看答案和解析>>

同步練習(xí)冊答案