【題目】函數(shù),當(dāng)時,恒成立,則的最大值是_____.

【答案】

【解析】

先根據(jù)恒成立寫出有關(guān)ab的約束條件,再在aob系中畫出可行域,由斜率模型可得

.又,令 t,則1≤t≤4,利用yt[1,4]上單調(diào)遞增,即可得出結(jié)論.

gm)=(3a2m+ba

由題意當(dāng)m[0,1]時,0≤fa≤1可得

0≤g0≤1,

0≤g1≤1,

0≤ba≤1,0≤2a+b2≤1

ab≤1+a①,2≤2a+b≤3 ②.

把(a,b)看作點(diǎn)畫出可行域,由斜率模型可看作是原點(diǎn)與(ab)連線的斜率,由圖可得當(dāng)(a,b)取點(diǎn)A時,原點(diǎn)與(ab)連線的斜率最大,與ba=0重合時原點(diǎn)與(a,b)連線的斜率最小.

14

,令 t,則1≤t≤4,

yt[14]上單調(diào)遞增,

t4時,即a,b時,y有最大值是.

的最大值是

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省普通高中學(xué)業(yè)水平考試成績按人數(shù)所占比例依次由高到低分為,,,五個等級,等級,等級等級,,等級共.其中等級為不合格,原則上比例不超過.該省某校高二年級學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機(jī)抽取了部分學(xué)生的考試成績進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.若該校高二年級共有1000名學(xué)生,則估計(jì)該年級拿到級及以上級別的學(xué)生人數(shù)有(

A.45B.660C.880D.900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若為整數(shù),且當(dāng)時, 恒成立,其中的導(dǎo)函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形均為正方形.

1)證明;平面平面ABCD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年年底,某城市地鐵交通建設(shè)項(xiàng)目已經(jīng)基本完成,為了解市民對該項(xiàng)目的滿意度,分別從不同地鐵站點(diǎn)隨機(jī)抽取若干市民對該項(xiàng)目進(jìn)行評分(滿分),繪制如下頻率分布直方圖,并將分?jǐn)?shù)從低到高分為四個等級:

滿意度評分

低于60

60分到79

80分到89

不低于90

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有人.

(1)求頻率分布于直方圖中的值,及評分等級不滿意的人數(shù);

(2)相關(guān)部門對項(xiàng)目進(jìn)行驗(yàn)收,驗(yàn)收的硬性指標(biāo)是:市民對該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,根據(jù)你所學(xué)的統(tǒng)計(jì)知識,判斷該項(xiàng)目能否通過驗(yàn)收,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的函數(shù),記,的最大值為.若存在,滿足,,則稱一次函數(shù)逼近函數(shù)此時的稱為上的逼近確界”.

1)驗(yàn)證,逼近函數(shù);

2)已知,,.逼近函數(shù),求a,b的值;

3)已知,求證;對任意常數(shù)a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)分別為橢圓C的左右焦點(diǎn),橢圓的離心率為,點(diǎn)在橢圓C上,不在軸上的動點(diǎn)P與動點(diǎn)Q關(guān)于原點(diǎn)O對稱,且四邊形的周長為.

1)求動點(diǎn)P的軌跡方程;

2)在動點(diǎn)P的軌跡上有兩個不同的點(diǎn)M,N,線段MN的中點(diǎn)為G,已知點(diǎn)在圓上,求的最大值,并判斷此時ΔOMN的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的表面積為__________;若該六面體內(nèi)有一小球,則小球的最大體積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三4班有50名學(xué)生進(jìn)行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學(xué)生進(jìn)行編號(1-50號),并以不同的方法進(jìn)行數(shù)據(jù)抽樣,其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優(yōu)秀,小于80分視為不優(yōu)秀,以下是甲、乙兩人分別抽取的樣本數(shù)據(jù):

甲抽取的樣本數(shù)據(jù)

編號

2

7

12

17

22

27

32

37

42

47

性別











投籃成

90

60

75

80

83

85

75

80

70

60

乙抽取的樣本數(shù)據(jù)

編號

1

8

10

20

23

28

33

35

43

48

性別











投籃成

95

85

85

70

70

80

60

65

70

60

)在乙抽取的樣本中任取3人,記投籃優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.

)請你根據(jù)乙抽取的樣本數(shù)據(jù)完成下列2×2列聯(lián)表,判斷是否有95%以上的把握認(rèn)為投籃成績和性別有關(guān)?


優(yōu)秀

非優(yōu)秀

合計(jì)









合計(jì)



10

)判斷甲、乙各用何種抽樣方法,并根據(jù)()的結(jié)論判斷哪種抽樣方法更優(yōu)?說明理由.

下面的臨界值表供參考:


0.15

0.10

0.05

0.010

0.005

0.001


2.072

2.706

3.841

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊答案