【題目】某省普通高中學(xué)業(yè)水平考試成績(jī)按人數(shù)所占比例依次由高到低分為,,五個(gè)等級(jí),等級(jí)等級(jí),等級(jí),,等級(jí)共.其中等級(jí)為不合格,原則上比例不超過(guò).該省某校高二年級(jí)學(xué)生都參加學(xué)業(yè)水平考試,先從中隨機(jī)抽取了部分學(xué)生的考試成績(jī)進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如圖所示.若該校高二年級(jí)共有1000名學(xué)生,則估計(jì)該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù)有(

A.45B.660C.880D.900

【答案】D

【解析】

根據(jù)等級(jí)的人數(shù)和占比,可計(jì)算出樣本容量.再根據(jù)扇形圖可計(jì)算出、、等級(jí)一共的人數(shù),即可估計(jì)該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù).

由條形圖和扇形統(tǒng)計(jì)圖可知,在抽取的部分學(xué)生中等級(jí)共有,占樣本容量的

所以樣本容量為

則樣本中等級(jí)人數(shù)為

由條形圖可知樣本中等級(jí)人數(shù)為

所以在樣本中級(jí)及以上級(jí)別的學(xué)生人數(shù)為

則該年級(jí)拿到級(jí)及以上級(jí)別的學(xué)生人數(shù)為

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程隊(duì)共有500人,要建造一段6000米的高速公路,工程需要把500人分成兩組,甲組的任務(wù)是完成一段4000米的軟土地帶,乙組的任務(wù)是完成剩下的2000米的硬土地帶,據(jù)測(cè)算,軟、硬土地每米的工程量是30工(工為計(jì)量單位)和40.

1)若平均分配兩組的人數(shù),分別計(jì)算兩組完工的時(shí)間,并求出此時(shí)全隊(duì)的筑路工期;

2)如何分配兩組的人數(shù)會(huì)使得全隊(duì)的筑路工期最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次高三年級(jí)模擬考試中,數(shù)學(xué)試卷有一道滿(mǎn)分10分的選做題,學(xué)生可以從AB兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計(jì)劃從900名考生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績(jī)按照隨機(jī)順序依次編號(hào)為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號(hào)為001~090的成績(jī)中用簡(jiǎn)單隨機(jī)抽樣確定的成績(jī)編號(hào)為025,求樣本中所有成績(jī)編號(hào)之和;

2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績(jī)分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績(jī)平均數(shù)為5,方差為2B題目的成績(jī)平均數(shù)為5.5,方差為0.25.

i)用樣本估計(jì)該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績(jī)的中位數(shù)和B題目成績(jī)的中位數(shù)都是5.5.從樣本中隨機(jī)選取兩個(gè)大于樣本平均值的數(shù)據(jù)做進(jìn)一步調(diào)查,求取到的兩個(gè)成績(jī)來(lái)自不同題目的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,點(diǎn)是曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)的延長(zhǎng)線(xiàn)上,且,點(diǎn)的軌跡為

(1)求直線(xiàn)及曲線(xiàn)的極坐標(biāo)方程;

(2)若射線(xiàn)與直線(xiàn)交于點(diǎn),與曲線(xiàn)交于點(diǎn)(與原點(diǎn)不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列,的前n項(xiàng)和為

1)若,,求證:,其中,

2)若對(duì)任意均有,求的通項(xiàng)公式;

3)若對(duì)任意均有,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),列需要檢驗(yàn)次;②混合檢驗(yàn),將其)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

(i)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求關(guān)于的函數(shù)關(guān)系式;

(ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年某開(kāi)發(fā)區(qū)一家汽車(chē)生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車(chē)制造設(shè)備,通過(guò)市場(chǎng)分析,全年需投入固定成本3000萬(wàn)元,每生產(chǎn)x(百輛),需另投入成本萬(wàn)元,且,由市場(chǎng)調(diào)研知,每輛車(chē)售價(jià)6萬(wàn)元,且全年內(nèi)生產(chǎn)的車(chē)輛當(dāng)年能全部銷(xiāo)售完.

1)求出2019年的利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷(xiāo)售額成本)

22019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) , ,

有零點(diǎn) m 的取值范圍;

確定 m 的取值范圍使得有兩個(gè)相異實(shí)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù),當(dāng)時(shí),恒成立,則的最大值是_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案