若x2+y2=1,則2y+x2最大值是
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用等式將2y+x2變?yōu)殛P(guān)于y的二次函數(shù)解析式,然后配方求最大值.
解答: 解:∵x2+y2=1,∴2y+1-y2=-(y-1)2+2,
∴x2+y2=1,y=1時(shí),2y+x2最大值是2;
故答案為:2.
點(diǎn)評(píng):本題考查了二次函數(shù)最值的求法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n,p∈R,且m+n=2-p,m2+n2=12-p2,則p的最大值和最小值的差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,若a=
2
,b=2,sinB+cosB=
2
,求角A的大小.
(2)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,已知c=2,C=
π
3
,若△ABC的面積為
3
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+b
1+x2
為奇函數(shù).
(1)求b的值;
(2)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(3)解關(guān)于x的不等式f(1+2x2)+f(-x2+2x-4)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,且f(1)=2
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù);
(3)求函數(shù)f(x)在區(qū)間[2,5]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2-a≤x≤2+a},B={x|4x2+12x-7≤0},若“x∈A”是“x∈B”的必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<x<0.5,則x取何值時(shí),x(1-2x)的值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)對(duì)于定義域內(nèi)的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=f(x)+g(x)有兩個(gè)極值點(diǎn)x1,x2,且x1∈(0,
1
2
),證明:h(x1)-h(x2)>
3
4
-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a<-4”是函數(shù)f(x)=ax+3在[-1,1]上存在零點(diǎn)的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案