【題目】如圖所示的多面體中,是菱形, 是矩形,平面,,,.
(1)求證:平面平面 ;
(2)在線段上取一點,當二面角的大小為時,求.
【答案】(1)見證明;(2)
【解析】
(1)取AE的中點M,先證明∠AMC就是二面角A-EF-C的平面角,再證明,即證平面平面 ;(2)以AC與BD交點O為坐標原點,0A、OB分別為軸建立直角坐標系,設(shè),利用向量法求得,解方程即得.
解:(1)取AE的中點M.由于ED⊥面ABCD,ED//FB,
∴DE⊥AD,ED⊥DC,F(xiàn)B⊥BC,F(xiàn)B⊥AB,又ABCD是菱形,BDEF是矩形,
所以△ADE,△CDE,△ABF,△CBF是全等直角三角形,AE=AF,CE=CF,
所以AM⊥EF,CM⊥EF,∠AMC就是二面角A-EF-C的平面角
經(jīng)計算,,
所以,即.
所以平面AEF⊥平面CEF.
(2)以AC與BD交點O為坐標原點,0A、OB分別為軸建立直角坐標系,由AD=BD=2,則A(,0,0),M(0,O,),C(﹣,0,0),E(0,﹣1,),
F(0,1,),.
平面CEF的一個法向量.
設(shè),則,
,
設(shè)平面NEF的法向量,則
得,
令,則,得.
因為二面角的大小為60°,
所以,
整理得,解得
所以.
科目:高中數(shù)學 來源: 題型:
【題目】已知點,在圓:上任取一點,的垂直平分線交于點.(如圖).
(1)求點的軌跡方程;
(2)若過點的動直線與(1)中的軌跡相交于、兩點.問:平面內(nèi)是否存在異于點的定點,使得恒成立?試證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經(jīng)過點A(2,-1),和直線x+y=1相切,且圓心在直線y=-2x上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過(2,0)點,并且被圓C截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列推理不屬于合情推理的是( )
A. 由銅、鐵、鋁、金、銀等金屬能導電,得出一切金屬都能導電.
B. 半徑為的圓面積,則單位圓面積為.
C. 由平面三角形的性質(zhì)推測空間三棱錐的性質(zhì).
D. 猜想數(shù)列2,4,8,…的通項公式為. .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.
①存在點,使得//平面;
②對于任意的點,平面平面;
③存在點,使得平面;
④對于任意的點,四棱錐的體積均不變.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】西安市自2017年5月啟動對“車不讓人行為”處罰以來,斑馬線前機動車搶行不文明行為得以根本改變,斑馬線前禮讓行人也成為了一張新的西安“名片”.
但作為交通重要參與者的行人,闖紅燈通行卻頻有發(fā)生,帶來了較大的交通安全隱患及機動車通暢率降低,交警部門在某十字路口根據(jù)以往的檢測數(shù)據(jù),得到行人闖紅燈的概率約為0.4,并從穿越該路口的行人中隨機抽取了200人進行調(diào)查,對是否存在闖紅燈情況得到列聯(lián)表如下:
30歲以下 | 30歲以上 | 合計 | |
闖紅燈 | 60 | ||
未闖紅燈 | 80 | ||
合計 | 200 |
近期,為了整頓“行人闖紅燈”這一不文明及項違法行為,交警部門在該十字路口試行了對闖紅燈行人進行經(jīng)濟處罰,并從試行經(jīng)濟處罰后穿越該路口行人中隨機抽取了200人進行調(diào)查,得到下表:
處罰金額(單位:元) | 5 | 10 | 15 | 20 |
闖紅燈的人數(shù) | 50 | 40 | 20 | 0 |
將統(tǒng)計數(shù)據(jù)所得頻率代替概率,完成下列問題.
(Ⅰ)將列聯(lián)表填寫完整(不需寫出填寫過程),并根據(jù)表中數(shù)據(jù)分析,在未試行對闖紅燈行人進行經(jīng)濟處罰前,是否有99.9%的把握認為闖紅燈與年齡有關(guān);
(Ⅱ)當處罰金額為10元時,行人闖紅燈的概率會比不進行處罰降低多少;
(Ⅲ)結(jié)合調(diào)查結(jié)果,談?wù)勅绾沃卫硇腥岁J紅燈現(xiàn)象.
參考公式: ,其中
參考數(shù)據(jù):
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.132 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點的坐標為,拋物線的方程為,過作動直線交拋物線于兩點,設(shè)線段的中點為.
(1)若與重合,求直線的方程;
(2)求直線的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com