已知函數(shù)f(x)=m2-2cosx•m-sin2x在cosx=-1時(shí)取得最大值,在cosx=m時(shí)取得最小值,則實(shí)數(shù)m的取值范圍為(  )
A、m≤-1B、m≥1
C、0≤m≤1D、-1≤m≤0
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的圖像與性質(zhì)
分析:將f(x)轉(zhuǎn)化為關(guān)于cosx的二次函數(shù),再配方,結(jié)合題意,利用二次函數(shù)的性質(zhì)即可求得實(shí)數(shù)m的取值范圍.
解答: 解:∵f(x)=cos2x-2cosx•m+m2-1=(cosx-m)2-1,在cosx=-1時(shí)取得最大值,在cosx=m時(shí)取得最小值,
∴0≤m≤1,
故選:C.
點(diǎn)評:本題考查同角三角函數(shù)關(guān)系式的應(yīng)用,考查二次函數(shù)與余弦函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知過曲線C上任意一點(diǎn)P作直線x=-2p(p>0)的垂線,垂足為M,且OP⊥OM.
(1)求曲線C的方程;
(2)設(shè)A、B是曲線C兩個(gè)不同點(diǎn),直線OA和OB的傾斜角分別為α和β,當(dāng)α,β變化且α+β為定值θ(0<θ<π)時(shí),證明直線AB恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二面角M-l-N的平面角大小為
2
3
π,直線m⊥平面M,則平面N內(nèi)的直線與m所成角的取值范圍是( 。
A、[
π
6
π
2
]
B、[
π
4
,
π
2
]
C、[
π
3
,
π
2
]
D、[0,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax-
1
a
的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知從A口袋中摸出一個(gè)球是紅球的概率為
1
3
,從B口袋中摸出一個(gè)球是紅球的概率為
2
5
.現(xiàn)從兩個(gè)口袋中各摸出一個(gè)球,那么這兩個(gè)球中沒有紅球的概率是( 。
A、
2
15
B、
2
5
C、
7
15
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD內(nèi)接于圓O,點(diǎn)E在CB的延長線上,AE切圓于O于點(diǎn)A,若AB∥CD,AD=4
3
,BE=2
3
,則AE等于( 。
A、36
B、6
C、24
D、2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=2x2-1在區(qū)間[a,b]上有最小值-1,則下面關(guān)系一定成立的是( 。
A、a≤0<b或a<0≤b
B、a<0<b
C、a<b<0或a<0<b
D、0<a<b或a<b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試證明函數(shù)f(x)=x2+1在(-∞,0)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系下,設(shè)圓C:ρ=2cosθ-4sinθ,試求:
(1)圓心的直角坐標(biāo)表示;
(2)在直角坐標(biāo)系中,設(shè)曲線C經(jīng)過變換μ:
x′=2x-2
y′=3y+6
得到曲線C′,則曲線C′的軌跡是什么圖形?

查看答案和解析>>

同步練習(xí)冊答案