【題目】如圖所示,在長方體ABCD﹣A1B1C1D1,若AB=BC,E,F分別是AB1,BC1的中點,則下列結(jié)論中不成立的是( )
A.EF與BB1垂直B.EF⊥平面BDD1B1
C.EF與C1D所成的角為45°D.EF∥平面A1B1C1D1
【答案】C
【解析】
連A1B,則A1B交AB1于E,可證EF∥A1C1,再由長方體的垂直關(guān)系,可判斷A正確;由已知可證A1C1⊥平面BDD1B1,可判斷B為正確;EF∥A1C1,EF與C1D所成角就是∠A1C1D,∠A1C1D的大小不確定,判斷C為錯誤; EF∥A1C1,可得D正確.
連A1B,則A1B交AB1于E,又F為BC1中點,
可得EF∥A1C1,由B1B⊥平面A1B1C1D1,
可得B1B⊥A1C1,可得B1B⊥EF,故A正確;
由EF∥A1C1,A1C1⊥平面BDD1B1,
可得EF⊥平面BDD1B1,故B正確;
EF與C1D所成角就是∠A1C1D,∵AA1 的長度不確定,
∴∠A1C1D的大小不確定,故C錯誤;
由E,F分別是AB1,BC1的中點,
得EF∥A1C1,可得EF∥平面A1B1C1D1,故D正確.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機模擬的方法估計小張三次射擊恰有兩次命中十環(huán)的概率,先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個隨機數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機模擬產(chǎn)生了如下20組隨機數(shù):
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據(jù)此估計,小張三次射擊恰有兩次命中十環(huán)的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列的前項和為,已知,且.
(1)求的通項公式.
(2)設(shè),數(shù)列的前項和為,求使不等式成立的最小的正整數(shù).
(3)設(shè).若數(shù)列單調(diào)遞增.
①求的取值范圍.
②若是符合條件的最小正整數(shù),那么中是否存在三項依次成等差數(shù)列?若存在,給出的值.若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點恰好是橢圓的右焦點.
(1)求實數(shù)的值及拋物線的準線方程;
(2)過點任作兩條互相垂直的直線分別交拋物線于、和、點,求兩條弦的弦長之和的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線過原點且傾斜角為.以坐標原點為極點,軸正半軸為極軸建立坐標系,曲線的極坐標方程為.在平面直角坐標系中,曲線與曲線關(guān)于直線對稱.
(Ⅰ)求曲線的極坐標方程;
(Ⅱ)若直線過原點且傾斜角為,設(shè)直線與曲線相交于,兩點,直線與曲線相交于,兩點,當變化時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為坐標原點,橢圓 的左、右焦點分別為,,通徑長(即過焦點且垂直于長軸的直線與橢圓相交所得的弦長)為3,短半軸長為.
(1)求橢圓的標準方程;
(2)設(shè)過點的直線與橢圓相交于,兩點,線段上存在一點到,兩邊的距離相等,若,間直線的斜率是否存在?若存在,求直線的斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=CD=1,PD=.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)求直線PE與平面PBC所成角的正弦值.
(3)在PC上是否存在一點Q,使得平面QAD與平面PBC所成銳二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,,,若M為PA的中點,PC與DE交于點N.
(1)求證:AC∥面MDE;
(2)求證:PE⊥MD;
(3)求點N到平面ABM的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓 ()的短軸長為2,橢圓上的點到右焦點距離的最大值為.過點作斜率為的直線交橢圓于,兩點(,),是線段的中點,直線交橢圓于,兩點.
(1)求橢圓的標準方程;
(2)若,,求的值;
(3)若存在直線,使得四邊形為平行四邊形,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com