【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,若 (acosB+bcosA)=2csinC,a+b=8,且△ABC的面積的最大值為4 ,則此時(shí)△ABC的形狀為(
A.等腰三角形
B.正三角形
C.直角三角形
D.鈍角三角形

【答案】A
【解析】解:∵ (acosB+bcosA)=2csinC,
(sinAcosB+sinBcosA)=2sin2C,
sinC=2sin2C,且sinC>0,
∴sinC=
∵a+b=8,可得:8≥2 ,解得:ab≤16,(當(dāng)且僅當(dāng)a=b=4成立)
∵△ABC的面積的最大值SABC= absinC≤ =4 ,
∴a=b=4,
則此時(shí)△ABC的形狀為等腰三角形.
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a1=2,點(diǎn)(an , an+1)在函數(shù)f(x)=x2+2x的圖象上,其中n=1,2,3,….
(1)求a3 , a4的值;
(2)證明數(shù)列{lg(1+an)}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)記bn= + ,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁4名同學(xué)被隨機(jī)地分到A、B、C三個(gè)社區(qū)參加社會(huì)實(shí)踐,要求每個(gè)社區(qū)至少有一名同學(xué).
(1)求甲、乙兩人都被分到A社區(qū)的概率;
(2)求甲、乙兩人不在同一個(gè)社區(qū)的概率;
(3)設(shè)隨機(jī)變量ξ為四名同學(xué)中到A社區(qū)的人數(shù),求ξ的分布列和Eξ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)中, 平面 , , 分別為, 的中點(diǎn).

(1)求證: 平面

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的通項(xiàng)公式為an=﹣n+p,數(shù)列{bn}的通項(xiàng)公式為bn=2n5 , 設(shè)cn= ,若在數(shù)列{cn}中c8>cn(n∈N* , n≠8),則實(shí)數(shù)p的取值范圍是(
A.(11,25)
B.(12,16]
C.(12,17)
D.[16,17)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓心在x軸上、半徑為2的圓C位于y軸右側(cè),且與直線 相切.
(1)求圓C的方程;
(2)在圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A,B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,an+1=1﹣ ,bn= ,其中n∈N*
(1)求證:數(shù)列{bn}為等差數(shù)列;
(2)設(shè)cn=bn+1 ,數(shù)列{cn}的前n項(xiàng)和為Tn , 求Tn;
(3)證明:1+ + +…+ ≤2 ﹣1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)若關(guān)于x的不等式﹣ +2x>mx的解集為(0,2),求m的值.
(2)在△ABC中,sinA= ,cosB= ,求cosC的值.

查看答案和解析>>

同步練習(xí)冊答案