【題目】如圖,長方體中,,點(diǎn)是的中點(diǎn).
(1)求證:平面;
(2)求二面角的大小.
【答案】(1)證明見解析(2)120°
【解析】
試題(1)建立如圖所示的空間直角坐標(biāo)系,利用向量法能證明DE⊥平面BCE.
(2)求出平面AEB的法向量和平面BCE的法向量,利用向量法能求出二面角A﹣EB﹣C的大。
(1)證明:建立如圖所示的空間直角坐標(biāo)系,
則D(0,0,0),E(0,1,1),
B(1,2,3),C(0,2,0),
∴=(0,1,1),=(﹣1,﹣1,1),=(﹣1,0,0),
∵=0,=0,
∴DE⊥BE,DE⊥BC,
∵BE平面BCE,BC平面BCE,BE∩BC=B,
∴DE⊥平面BCE.
(2)解:設(shè)平面AEB的法向量=(x,y,z),
則,
取x=1,得=(1,0,1),
∵DE⊥平面BCE,∴=(0,1,1)是平面BCE的法向量,
∵cos<>==,
∴二面角A﹣EB﹣C的大小為120°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,且),,(其中為的導(dǎo)函數(shù)).
(1)當(dāng)時,求的極大值點(diǎn);
(2)討論的零點(diǎn)個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值點(diǎn);
(2)已知T(,)為函數(shù),的公共點(diǎn),且函數(shù),在點(diǎn)T處的切線相同,求a的值;
(3)若函數(shù)在(0,)上的零點(diǎn)個數(shù)為2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)三棱錐的底面是正三角形,側(cè)棱長均相等,是棱上的點(diǎn)(不含端點(diǎn)),記直線與直線所成角為,直線與平面所成角為,二面角的平面角為,則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與橢圓有共同焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程;
(2)已知拋物線的焦點(diǎn)在軸上,拋物線上的點(diǎn)到焦點(diǎn)的距離等于5,求拋物線的標(biāo)準(zhǔn)方程和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將集合中的元素作全排列,使得除了最左端的一個數(shù)之外,對于其余的每個數(shù),在的左邊某個位置上總有一個數(shù)與之差的絕對值為1.則滿足條件的排列個數(shù)為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請求出該定點(diǎn);若不經(jīng)過定點(diǎn),請給出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com