解:(1)′由
=0,得a=b. …(1分)
故f(x)=ax
3-2ax
2+ax+c.
由f′(x)=a(3x
2-4x+1)=0,得x
1=
,x
2=1.…(2分)列表:
x | (-∞,) | | (,1) | 1 | (1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 增 | 極大值 | 減 | 極小值 | 增 |
由表可得,函數(shù)f(x)的單調(diào)增區(qū)間是(-∞,
)及(1,+∞).…(4分)
(2)f′(x)=3ax
2-2(a+b)x+b=3
.
①當(dāng)
時,則f′(x)在[0,1]上是單調(diào)函數(shù),
所以f′(1)≤f′(x)≤f′(0),或f′(0)≤f′(x)≤f′(1),且f′(0)+f′(1)=a>0.
所以|f′(x)|≤max{f′(0),f′(1)}.…(8分)
②當(dāng)
,即-a<b<2a,則
≤f′(x)≤max{f′(0),f′(1)}.
(i) 當(dāng)-a<b≤
時,則0<a+b≤
.
所以 f′(1)
=
=
≥
>0.
所以|f′(x)|≤max{f′(0),f′(1)}. …(12分)
(ii) 當(dāng)
<b<2a時,則
<0,即a
2+b
2-
<0.
所以
=
>
>0,即f′(0)>
.
所以|f′(x)|≤max{f′(0),f′(1)}.
綜上所述:當(dāng)0≤x≤1時,|f′(x)|≤max{f′(0),f′(1)}.…(16分)
分析:(1)由
=0,可得a=b,所以f(x)=ax
3-2ax
2+ax+c.由f'(x)=a(3x
2-4x+1)=0,得x
1=
,x
2=1,利用導(dǎo)數(shù)大于0,可得函數(shù)f(x)的單調(diào)增區(qū)間;
(2)先求導(dǎo)函數(shù)f'(x)=3ax
2-2(a+b)x+b=3
.由于函數(shù)的對稱軸為
,
0≤x≤1,故需要進行分類討論:①當(dāng)
時,則f'(x)在[0,1]上是單調(diào)函數(shù);②當(dāng)
,即-a<b<2a,則
≤f'(x)≤max{f'(0),f'(1)},從而可證得結(jié)論.
點評:本題以函數(shù)為載體,主要考查用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,基本思路是:當(dāng)函數(shù)為增函數(shù)時,導(dǎo)數(shù)大于零;當(dāng)函數(shù)為減函數(shù)時,導(dǎo)數(shù)小于零,考查二次函數(shù)的最值,解題的關(guān)鍵是分類討論.