精英家教網 > 高中數學 > 題目詳情
(2012•安徽模擬)已知函數f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),則實數a的取值范圍是
(-6,1)
(-6,1)
分析:由題意可得g(x)=-x2+4x-10=-(x-2)2-6在(-∞,2]上單調遞增,h(x)=log3(x-1)-6在(2,+∞)上單調遞增且g(x)≤h(x),從而可得f(x)為單調遞增函數,即可得6-a2>5a,解不等式可求
解答:解:∵g(x)=-x2+4x-10=-(x-2)2-6在(-∞,2]上單調遞增,最大值g(2)=-6
h(x)=log3(x-1)-6在(2,+∞)上單調遞增,最小值h(2)=-6
∴h(x)最小值=g(x)最大值
∴f(x)為單調遞增函數,
∵f(6-a2)>f(5a)
∴6-a2>5a即a2+5a-6<0
∴-6<a<1
故答案為(-6,1)
點評:本題考查函數解析式的求解和常用方法,解題得關鍵是判斷函數f(x)得單調性,注意分段函數的性質和應用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•安徽模擬)在復平面內,復數z=
1+i
i-2
對應的點位于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)定義在R上的奇函數f(x)滿足:x≤0時f(x)=ax+b(a>0且a≠1),f(1)=
1
2
,則f(2)=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)(理)若變量x,y滿足約束條件
x+y-3≤0
x-y+1≥0
y≥1
,則z=|y-2x|的最大值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)下列說法不正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)已知f(x)=2
3
sinx+
sin2x
sinx

(1)求f(x)的最大值,及當取最大值時x的取值集合.
(2)在三角形ABC中,a,b,c分別是角A,B,C所對的邊,對定義域內任意x,有f(x)≤f(A),若a=
3
,求
AB
AC
的最大值.

查看答案和解析>>

同步練習冊答案