如圖所示,在△ABC中,
BC
=
2
BD
,AD⊥AB,|
AD
|=1,求
AC
AD
的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專(zhuān)題:平面向量及應(yīng)用
分析:由平面向量的加減運(yùn)算和數(shù)量積的運(yùn)算,結(jié)合垂直關(guān)系化簡(jiǎn)可得.
解答: 解:由題意可得
AC
AD
=(
AB
+
BC
)•
AD
=
AB
AD
+
2
BD
AD

=(
AB
+
2
BD
)•
AD
=
AB
AD
+
2
BD
AD
=
2
BD
AD

=
2
(
AD
-
AB
)•
AD
=
2
AD
2
-
2
AB
AD
=
2
點(diǎn)評(píng):本題考查平面向量數(shù)量積的運(yùn)算,涉及向量垂直和數(shù)量積的關(guān)系,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)在等比數(shù)列{an}中,a1>0,n∈N*,且a5-a4=8,又a2、a8的等比中項(xiàng)為16.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4an,數(shù)列{bn}的前n項(xiàng)和為Sn,求和
1
S2
+
1
S3
+…+
1
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式2xlnx≥-x2+ax-3對(duì)x∈(0,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{cn}滿(mǎn)足(i)
cncn+2
≤cn+1,(ii)存在常數(shù)M(M與n無(wú)關(guān)),使得cn<M恒成立,則稱(chēng)數(shù)列{cn}是和諧數(shù)列.
(1)已知各項(xiàng)均為正數(shù)的等比數(shù)列{an},Sn為其前n項(xiàng)和;且a3=4,S3=28,求證:數(shù)列{Sn}是和諧數(shù)列;
(2)已知各項(xiàng)均為正數(shù)、公比為q的等比數(shù)列{bn},Tn為其前n項(xiàng)和,求證:{Tn}是和諧數(shù)列的充要條件為:0<q<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
1
x2
-x-20的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

分別畫(huà)出y=x2+4|x|-5和y=x2-4|x|-5與|x|+|y|=1的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a+
b
i
為純虛數(shù)”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x
(2x+1)(x+a)
的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在如圖圖形中,小黑點(diǎn)的個(gè)數(shù)構(gòu)成一個(gè)數(shù)列{an}的前3項(xiàng).
(1)a5=
 
;
(2)數(shù)列{an}的一個(gè)通項(xiàng)公式an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案