【題目】已知函數(shù),且定義域?yàn)?/span>.
(1)求關(guān)于的方程在上的解;
(2)若在區(qū)間上單調(diào)減函數(shù),求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的取值范圍.
【答案】(1);(2);(3)
【解析】分析:(1)由題意得,討論和兩種情況去絕對(duì)值解方程即可;
(2)由,函數(shù)單減則有,從而得解;
(3)討論和下解方程即可.
詳解:(1)令,即有.
當(dāng)時(shí),方程即為,方程無(wú)解;
當(dāng)時(shí),方程即為,解得(負(fù)值舍去).
綜上,方程的解為.
(2),
由在上單調(diào)遞減,則,
解得,所以實(shí)數(shù)的取值范圍是.
(3)當(dāng)時(shí),, ①
當(dāng)時(shí),, ②
若,則①無(wú)解,②的解為,故不成立;
若,則①的解為 .
(Ⅰ)當(dāng),即時(shí),中,
則一個(gè)根在內(nèi),另一根不在內(nèi),設(shè),
因?yàn)?/span>,所以,解得,
又,則此時(shí),
(Ⅱ)當(dāng),即或時(shí),②在內(nèi)有不同兩根,
由,知②必有負(fù)數(shù)根,所以不成立,
綜上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】高二學(xué)生小嚴(yán)利用暑假參加社會(huì)實(shí)踐,為了幫助貿(mào)易公司的購(gòu)物網(wǎng)站優(yōu)化今年國(guó)慶節(jié)期間的營(yíng)銷策略,他對(duì)去年10月1日當(dāng)天在該網(wǎng)站消費(fèi)且消費(fèi)金額不超過(guò)1000元的1000名(女性800名,男性200名)網(wǎng)購(gòu)者,根據(jù)性別按分層抽樣的方法抽取100名進(jìn)行分析,得到如下統(tǒng)計(jì)圖表(消費(fèi)金額單位:元):
女性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 5 | 10 | 15 |
男性消費(fèi)情況:
消費(fèi)金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
人數(shù) | 2 | 3 | 10 | 2 |
(1)現(xiàn)從抽取的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的這兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女性 | 男性 | 總計(jì) | |
網(wǎng)購(gòu)達(dá)人 | |||
非網(wǎng)購(gòu)達(dá)人 | |||
總計(jì) |
附:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了監(jiān)控某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,檢驗(yàn)員每天從該生產(chǎn)線上隨機(jī)抽取16個(gè)零件,并測(cè)量其尺寸(單位: ).根據(jù)長(zhǎng)期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件的尺寸服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示一天內(nèi)抽取的16個(gè)零件中其尺寸在之外的零件數(shù),求及的數(shù)學(xué)期望;
(2)一天內(nèi)抽檢零件中,如果出現(xiàn)了尺寸在之外的零件,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查.
(。┰囌f(shuō)明上述監(jiān)控生產(chǎn)過(guò)程方法的合理性;
(ⅱ)下面是檢驗(yàn)員在一天內(nèi)抽取的16個(gè)零件的尺寸:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
經(jīng)計(jì)算得,其中為
抽取的第個(gè)零件的尺寸, .
用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)當(dāng)天的生產(chǎn)過(guò)程進(jìn)行檢查?剔除之外的數(shù)據(jù),用剩下的數(shù)據(jù)估計(jì)和(精確到0.01).
附:若隨機(jī)變量服從正態(tài)分布,則, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=x﹣aex(a∈R),x∈R,已知函數(shù)y=f(x)有兩個(gè)零點(diǎn)x1 , x2 , 且x1<x2 .
(1)求a的取值范圍;
(2)證明: 隨著a的減小而增大;
(3)證明x1+x2隨著a的減小而增大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), 函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間和最小值;
(2)討論 與 的大小關(guān)系;
(3)求的取值范圍,使得 對(duì)任意的都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中混裝著9個(gè)大小相同的球(編號(hào)不同),其中5只白球,4只紅球,為了把紅球與白球區(qū)分開來(lái),采取逐只抽取檢查,若恰好經(jīng)過(guò)5次抽取檢查,正好把所有白球和紅球區(qū)分出來(lái)了,則這樣的抽取方式共有__________種(用數(shù)字作答) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知F為拋物線y2=x的焦點(diǎn),點(diǎn)A,B在該拋物線上且位于x軸的兩側(cè), =2(其中O為坐標(biāo)原點(diǎn)),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次函數(shù),分別從集合和中隨機(jī)取一個(gè)數(shù)和得到數(shù)對(duì).
(1)若, ,求函數(shù)有零點(diǎn)的概率;
(2)若, ,求函數(shù)在區(qū)間上是增函數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批產(chǎn)品的長(zhǎng)度(單位:毫米)進(jìn)行抽樣檢測(cè),如圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上為一等品,在區(qū)間[15,20)和[25,30)上為二等品,在區(qū)間[10,15)和[30,35]上為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取1件,則其為二等品的概率是( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com