【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300名學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區(qū)間為:,,,,,,估計該校學生每周平均體育運動時間超過4小時的概率;
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有的把握認為“該校學生的毎周平均體育運動時間與性別有關”.
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | |||
每周平均體育運動時間超過4小時 | |||
總計 |
附:,其中.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)90位;(2)0.75;(3)聯(lián)表見解析,有
【解析】
(1)按照女生占學生數的比例,即可求解;
(2)根據直方圖得出頻率,即可求解;
(3)算出列聯(lián)表數據,利用獨立性檢驗求解即可.
(1),
∴應收集90位女生的樣本數據.
(2)由頻率分布直方圖可得,
∴該校學生每周平均體育運動時間超過4小時的概率為0.75.
(3)由(2)知,300位學生中有人每周平均體育運動時間超過4小時,75人每周平均體育運動時間不超過4小時,
又因為樣本數據中有210份是關于男生的,90份是關于女生的,所以每周平均體育運動時間與性別列聯(lián)表如下:
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | 45 | 30 | 75 |
每周平均體育運動時間超過4小時 | 165 | 60 | 225 |
總計 | 210 | 90 | 300 |
∴,
∴有的把握認為“該校學生的每周平均體育運動時間與性別有關”.
科目:高中數學 來源: 題型:
【題目】已知集合是滿足下列性質的函數的全體,存在實數,對于定義域內的任意均有成立,稱數對為函數的“伴隨數對”.
(1)判斷是否屬于集合,并說明理由;
(2)若函數,求滿足條件的函數的所有“伴隨數對”;
(3)若,都是函數的“伴隨數對”,當時,;當時,.求當時,函數的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的前項和為,且點在函數的圖像上;
(1)求數列的通項公式;
(2)設數列滿足:,,求的通項公式;
(3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數的取值范圍;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了人,他們年齡的頻數分布及支持“生育二胎”人數如下表:
年齡 | ||||||
頻數 | ||||||
支持“生二胎” |
(1)由以上統(tǒng)計數據填下面列聯(lián)表,并問是否有的把握認為以歲為分界點對“生育二胎放開”政策的支持度有差異;
年齡不低于歲的人數 | 年齡低于歲的人數 | 合計 | |
支持 | |||
不支持 | |||
合計 |
(2)若對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓周率是一個在數學及物理學中普遍存在的數學常數,它既常用又神秘,古今中外很多數學家曾研究它的計算方法.下面做一個游戲:讓大家各自隨意寫下兩個小于1的正數然后請他們各自檢查一下,所得的兩數與1是否能構成一個銳角三角形的三邊,最后把結論告訴你,只需將每個人的結論記錄下來就能算出圓周率的近似值.假設有個人說“能”,而有個人說“不能”,那么應用你學過的知識可算得圓周率的近似值為()
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(,為參數),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.
(1)求曲線的極坐標方程;
(2)在曲線上取兩點、于原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為海里
(1)若,求臺風影響城市A持續(xù)的時間(精確到1分鐘)?
(2)若臺風影響城市A持續(xù)的時間不超過1小時,求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點的坐標分別為,.三角形的兩條邊,所在直線的斜率之積是.
(1)求點的軌跡方程;
(2)設直線方程為,直線方程為,直線交于,點,關于軸對稱,直線與軸相交于點.若的面積為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業(yè)為確定下一年度投入某種產品的生產所需的資金,需了解每投入2千萬資金后,工人人數(單位:百人)對年產能(單位:千萬元)的影響,對投入的人力和年產能的數據作了初步處理,得到散點圖和統(tǒng)計量表.
(1)根據散點圖判斷:與哪一個適宜作為年產能關于投入的人力的回歸方程類型?并說明理由?
(2)根據(1)的判斷結果及相關的計算數據,建立關于的回歸方程;
(3)現該企業(yè)共有2000名生產工人,資金非常充足,為了使得年產能達到最大值,則下一年度共需投入多少資金(單位:千萬元)?
附注:對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,(說明:的導函數為)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com