【題目】已知數(shù)列的前項和為,且點在函數(shù)的圖像上;

1)求數(shù)列的通項公式;

2)設(shè)數(shù)列滿足:,,求的通項公式;

3)在第(2)問的條件下,若對于任意的,不等式恒成立,求實數(shù)的取值范圍;

【答案】(1)(2)當(dāng)n為偶數(shù)時,;當(dāng)n為奇數(shù)時,.(3)

【解析】

1)根據(jù),討論兩種情況,即可求得數(shù)列的通項公式;

2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時的通項公式.也可利用數(shù)學(xué)歸納法,先猜想出通項公式,再用數(shù)學(xué)歸納法證明.

3)分類討論,當(dāng)n為奇數(shù)或偶數(shù)時,分別求得的最大值,即可求得的取值范圍.

1)由題意可知,.

當(dāng),,

當(dāng),也滿足上式.

所以.

2)解法一:由(1)可知,

.

當(dāng),,

當(dāng),,所以,

當(dāng),,

當(dāng),,所以,

……

當(dāng),n為偶數(shù)

當(dāng),n為偶數(shù)所以

以上個式子相加,

.

,所以當(dāng)n為偶數(shù)時,.

同理,當(dāng)n為奇數(shù)時,

,

所以,當(dāng)n為奇數(shù)時,.

解法二:

猜測:當(dāng)n為奇數(shù)時,

.

猜測:當(dāng)n為偶數(shù)時,

.

以下用數(shù)學(xué)歸納法證明:

,命題成立;

假設(shè)當(dāng),命題成立;

當(dāng)n為奇數(shù)時,,

當(dāng),n為偶數(shù),

,,命題也成立.

綜上可知, 當(dāng)n為奇數(shù)時

同理,當(dāng)n為偶數(shù)時,命題仍成立.

3)由(2)可知.

①當(dāng)n為偶數(shù)時,,

所以n的增大而減小從而當(dāng)n為偶數(shù)時,的最大值是.

②當(dāng)n為奇數(shù)時,,

所以n的增大而增大,.

綜上,的最大值是1.

因此,若對于任意的,不等式恒成立,只需,

故實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)調(diào)查了某班全部名同學(xué)參加學(xué)校社團的情況,數(shù)據(jù)如下表:(單位:人)

參加書法社

未參加書法社

參加辯論社

未參加辯論社

1)從該班隨機選名同學(xué),求該同學(xué)至少參加一個社團的概率;

2)在既參加書法社又參加辯論社的名同學(xué)中,有名男同學(xué),名女同學(xué).現(xiàn)從這名同學(xué)中男女姓各隨機選人(每人被選到的可能性相同).

(i)列舉出所有可能結(jié)果;

(ii)設(shè)為事件“被選中且未被選中”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,BC三個班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時):

A

6 6.5 7 7.5 8

B

6 7 8 9 10 11 12

C

3 4.5 6 7.5 9 10.5 12 13.5

)試估計C班的學(xué)生人數(shù);

)從A班和C班抽出的學(xué)生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時間相互獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;

)再從AB,C三個班中各隨機抽取一名學(xué)生,他們該周的鍛煉時間分別是79,8.25(單位:小時).3個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為,試判斷的大小.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的右焦點為,點分別是橢圓的上、下頂點,點是直線上的一個動點(與軸交點除外),直線交橢圓于另一點.

1)當(dāng)直線過橢圓的右焦點時,求的面積;

2)記直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)討論的單調(diào)性;

(3)若有兩個零點,求的取值范圍(只需直接寫出結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,都有成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的極值;

2)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;

3)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有學(xué)生15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300名學(xué)生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

1)應(yīng)收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300個樣本數(shù)據(jù),得到學(xué)生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,估計該校學(xué)生每周平均體育運動時間超過4小時的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有的把握認為該校學(xué)生的毎周平均體育運動時間與性別有關(guān)”.

男生

女生

總計

每周平均體育運動時間不超過4小時

每周平均體育運動時間超過4小時

總計

附:,其中.

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司打算引進一臺設(shè)備使用一年,現(xiàn)有甲、乙兩種設(shè)備可供選擇.甲設(shè)備每臺10000元,乙設(shè)備每臺9000.此外設(shè)備使用期間還需維修,對于每臺設(shè)備,一年間三次及三次以內(nèi)免費維修,三次以外的維修費用均為每次1000.該公司統(tǒng)計了曾使用過的甲、乙各50臺設(shè)備在一年間的維修次數(shù),得到下面的頻數(shù)分布表,以這兩種設(shè)備分別在50臺中的維修次數(shù)頻率代替維修次數(shù)發(fā)生的概率.

維修次數(shù)

2

3

4

5

6

甲設(shè)備

5

10

30

5

0

乙設(shè)備

0

5

15

15

15

1)設(shè)甲、乙兩種設(shè)備每臺購買和一年間維修的花費總額分別為,求的分布列;

2)若以數(shù)學(xué)期望為決策依據(jù),希望設(shè)備購買和一年間維修的花費總額盡量低,且維修次數(shù)盡量少,則需要購買哪種設(shè)備?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案