【題目】A,B,C三個(gè)班共有100名學(xué)生,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲得了部分學(xué)生一周的鍛煉時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)):

A

6 6.5 7 7.5 8

B

6 7 8 9 10 11 12

C

3 4.5 6 7.5 9 10.5 12 13.5

)試估計(jì)C班的學(xué)生人數(shù);

)從A班和C班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,C班選出的人記為乙.假設(shè)所有學(xué)生的鍛煉時(shí)間相互獨(dú)立,求該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長的概率;

)再從A,B,C三個(gè)班中各隨機(jī)抽取一名學(xué)生,他們?cè)撝艿腻憻挄r(shí)間分別是7,98.25(單位:小時(shí)).3個(gè)新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中數(shù)據(jù)的平均數(shù)記為,試判斷的大小.(結(jié)論不要求證明)

【答案】40;(;(III.

【解析】

試題()根據(jù)圖表,結(jié)合分層抽樣的抽樣比計(jì)算C班的學(xué)生人數(shù);

)根據(jù)題意列出該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長的所有事件,由相互獨(dú)立事件概率公式求解.

)根據(jù)平均數(shù)公式進(jìn)行判斷即可.

試題解析:()由題意知,抽出的名學(xué)生中,來自C班的學(xué)生有.根據(jù)分層抽樣方法,C班的學(xué)生人數(shù)估計(jì)為.

)設(shè)事件甲是現(xiàn)有樣本中A班的第個(gè)人,

事件乙是現(xiàn)有樣本中C班的第個(gè)人,

由題意可知,;,.

,,.

設(shè)事件該周甲的鍛煉時(shí)間比乙的鍛煉時(shí)間長”.由題意知,

.

因此

.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義上的函數(shù),若滿足:對(duì)任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界.

(1)設(shè),判斷上是否有界函數(shù),若是,請(qǐng)說明理由,并寫出的所有上界的值的集合,若不是,也請(qǐng)說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,,函數(shù).

1)設(shè),若是奇函數(shù),求的值;

2)設(shè),,判斷函數(shù)上的單調(diào)性并加以證明;

3)設(shè),,函數(shù)的圖象是否關(guān)于某垂直于軸的直線對(duì)稱?如果是,求出該對(duì)稱軸,如果不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體,存在實(shí)數(shù),對(duì)于定義域內(nèi)的任意均有成立,稱數(shù)對(duì)為函數(shù)的“伴隨數(shù)對(duì)”.

(1)判斷是否屬于集合,并說明理由;

(2)若函數(shù),求滿足條件的函數(shù)的所有“伴隨數(shù)對(duì)”;

(3)若,都是函數(shù)的“伴隨數(shù)對(duì)”,當(dāng)時(shí),;當(dāng)時(shí),.求當(dāng)時(shí),函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點(diǎn)處的切線與直線平行,求滿足的關(guān)系;

(2)當(dāng)時(shí),討論的單調(diào)性;

(3)當(dāng)時(shí),對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)(a,);

(1)若,求證:函數(shù)的圖像必過定點(diǎn);

(2)若,證明:在區(qū)間上的最大值;

(3)存在實(shí)數(shù)a,使得當(dāng)時(shí),恒成立,求實(shí)數(shù)b的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個(gè)頂點(diǎn)圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)直線與橢圓交于, 兩點(diǎn), 的中點(diǎn)在圓上,求為坐標(biāo)原點(diǎn))面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;

1)求數(shù)列的通項(xiàng)公式;

2)設(shè)數(shù)列滿足:,,求的通項(xiàng)公式;

3)在第(2)問的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在位于城市A南偏西相距100海里的B處,一股臺(tái)風(fēng)沿著正東方向襲來,風(fēng)速為120海里/小時(shí),臺(tái)風(fēng)影響的半徑為海里

1)若,求臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間(精確到1分鐘)?

2)若臺(tái)風(fēng)影響城市A持續(xù)的時(shí)間不超過1小時(shí),求的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案