16.由三條曲線y=$\sqrt{x}$,x軸及直線y=x-2所圍成的圖形的面積是$\frac{16}{3}$.

分析 由圖象得到圍成圖形的面積利用定積分表示出來,然后計算定積分即可.

解答 解:由三條曲線y=$\sqrt{x}$,x軸及直線y=x-2所圍成的圖形如圖,
面積是:${∫}_{0}^{2}\sqrt{x}dx+{∫}_{2}^{4}(\sqrt{x}-x+2)dx$=$\frac{2}{3}{x}^{\frac{3}{2}}{|}_{0}^{2}+(\frac{2}{3}{x}^{\frac{3}{2}}-\frac{1}{2}{x}^{2}+2x){|}_{2}^{4}$=$\frac{16}{3}$;
故答案為:$\frac{16}{3}$

點評 本題考查了利用定積分求封閉圖形的面積;正確確定定積分以及上限和下限是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集U={x∈Z|1≤x≤5},A={1,2,3},B={1,2},則A∩∁UB=( 。
A.{3}B.{1,3}C.{1,2,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知直角△ABC的頂點A的坐標為(-2,0),直角頂點B的坐標為(1,$\sqrt{3}$),頂點C在x軸上.
(1)求邊BC所在直線的方程;
(2)求直線△ABC的斜邊中線所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若f(x)在R上是偶函數(shù),且在[0,+∞)上是減函數(shù),則下列結(jié)論正確的是( 。
A.f(1.1)>f(-2.3)>f(3.5)B.f(3.5)>f(1.1)>f(-2.3)C.f(-2.3)>f(3.5)>f(1.1)D.f(-2.3)>f(1.1)>f(3.5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.寫出命題“矩形的對角線相等”的否定存在一個矩形的對角線不相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.等差數(shù)列{an}中,已知S4=2,S8=7,則a17+a18+a19+a20 的值等于14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.下列說法中,正確說法的序號是②④.
①若x≠0,則x+$\frac{1}{x}$≥2;②若xy>0,則$\frac{y}{x}$+$\frac{x}{y}$≥2;
③若θ為銳角,則sinθ+$\frac{1}{sinθ}$最小值為2;④若x+y=0,則2x+2y≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.我國是世界上嚴重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.以正方體ABCDA1B1C1D1的棱AB,AD,AA1所在的直線為x,y,z軸建立空間直角坐標系,且正方體的棱長為一個單位長度,則棱CA1中點的坐標為($\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{2}$).

查看答案和解析>>

同步練習冊答案