精英家教網 > 高中數學 > 題目詳情

【題目】養(yǎng)路處建造圓錐形倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12 m,高為4 m.養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽.現有兩種方案:一是新建的倉庫的底面直徑比原來大4 m(高不變);二是高度增加4 m(底面直徑不變)

1)分別計算按這兩種方案所建的倉庫的體積;

2)分別計算按這兩種方案所建的倉庫的表面積(不含底面積)

3)哪個方案更經濟些?

【答案】1,;(2,;(3)方案二.

【解析】

1)根據底面半徑和高,根據體積公式,分別計算兩種方案的體積;

2)根據半徑和高求母線長,根據公式求圓錐的表面積(不含底面積);

3)比較兩種方案的體積和表面積,得出結論.

1)第一種方案底面直徑為,高為,此時倉庫的體積是

第二種方案底面直徑為,高為,此時倉庫的體積是

;

2)第一種方案:底面半徑是,高,則母線長

則倉庫的表面積(不含底面積)

第二種方案:底面半徑是,高,則母線長,

則倉庫的表面積(不含底面積)

3)由(1)(2)可知,第二種方案的體積大,可以貯藏更多的食鹽;

,第二種方案的表面積(不含底面積)小,則用料少,成本低,所以選擇方案二更經濟.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數是奇函數,.

1)求a的值

2)判斷函數上的單調性,說明理由;

3)若任意,不等式總成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若1路、2路公交車均途經泉港一中校門口,其中1路公交車每10分鐘一趟,2路公交車每20分鐘一趟,某生去坐這2趟公交車回家,則等車不超過5分鐘的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F(1,0),拋物線E:x2=2py的焦點為M.

(1)若過點M的直線l與拋物線C有且只有一個交點,求直線l的方程;

(2)若直線MF與拋物線C交于A,B兩點,求△OAB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“砥礪奮進的五年”,泉州市經濟社會發(fā)展取得新成就.自2012年以來,泉州市城鄉(xiāng)居民收入穩(wěn)步增長.隨著擴大內需,促進消費等政策的出臺,居民消費支出全面增長,消費結構持續(xù)優(yōu)化升級,城鄉(xiāng)居民人均可支配收入快速增長,人民生活品質不斷提升.下圖是泉州市2012-2016年城鄉(xiāng)居民人均可支配收入實際增速趨勢圖(例如2012年,泉州城鎮(zhèn)居民收入實際增速為7.3%,農村居民收入實際增速為8.2%).

(1)從2012-2016五年中任選一年,求城鎮(zhèn)居民收入實際增速大于7%的概率;

(2)從2012-2016五年中任選二年,求至少有一年農村和城鎮(zhèn)居民收入實際增速均超過7%的概率;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )

A. 1盞 B. 3盞 C. 5盞 D. 9盞

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“微信運動”是一個類似計步數據庫的公眾帳號,用戶只需以運動手環(huán)或手機協處理器的運動教據為介,然后關注該公眾號,就能看見自己與好友每日行走的步數,并在同一排行榜上得以體現,現隨機選取朋友圈中的50人記錄了他們某一天的走路步數,并將數據整理如下:

規(guī)定:人一天行走的步數超過8000步時被系統評定為“積極性”,否則為“懈怠性”.

(1)填寫下面列聯表(單位:人),并根據列聯表判斷是否有的把握認為“評定類型與性別有關”;

附:

(2)為了進一步了解“懈怠性”人群中每個人的生活習慣,從步行在的人群中再隨機抽取3人,求選中的人中男性人數超過女性人數的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某中學舉行的物理知識競賽中,將三個年級參賽學生的成績在進行整理后分成5組,繪制出如圖所示的須率分布直方圖,圖中從左到右依次為第一、第二、第三、第四、第五小組.已知第三小組的頻數是15.

1)求成績在50-70分的頻率是多少

2)求這三個年級參賽學生的總人數是多少:

3)求成績在80-100分的學生人數是多少

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高科技企業(yè)生產產品和產品需要甲、乙兩種新型材料.生產一件產品需要甲材料,乙材料,并且需要花費1天時間;生產一件產品需要甲材料,乙材料,也需要1天時間,生產一件產品的利潤為1000元,生產一件產品的利潤為2000.該企業(yè)現有甲、乙材料各,則在不超過120天的條件下,求生產產品、產品的利潤之和的最大值.

查看答案和解析>>

同步練習冊答案