【題目】已知函數(shù)是奇函數(shù),.
(1)求a的值
(2)判斷函數(shù)在上的單調(diào)性,說(shuō)明理由;
(3)若任意,不等式總成立,求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2)單調(diào)遞增;見(jiàn)解析;(3)
【解析】
(1)根據(jù)奇偶性可得定義域關(guān)于原點(diǎn)對(duì)稱,再求出函數(shù)的定義域求解,
(2)設(shè)任意,且,利用定義法證明函數(shù)單調(diào)性即可.
(3) 由題意知,時(shí)恒成立,再根據(jù)單調(diào)性求的最小值即可.
(1)∵是奇函數(shù),∴定義域關(guān)于原點(diǎn)對(duì)稱,
由,得.
令,得,,∴,解得.
(2) 函數(shù)在上的單調(diào)遞增.
令,設(shè)任意,且,
則,
∵,∴,,,
∴,即.
所以對(duì)任意,且
由函數(shù)在定義域內(nèi)是單調(diào)遞減函數(shù),則
所以,即
∴在上為增函數(shù).
(3)由題意知,時(shí)恒成立,
令,,由(1)知在上為增函數(shù),
又在上也是增函數(shù),故在上為增函數(shù),
∴的最小值為,
∴,故實(shí)數(shù)的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某職稱晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿分為100分).
(1)求圖中的值;
(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有85%的把握認(rèn)為“晉級(jí)成功”與性別有關(guān)?
(參考公式: ,其中)
(3)將頻率視為概率,從本次考試的所有人員中,隨機(jī)抽取4人進(jìn)行約談,記這4人中晉級(jí)失敗的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了考核甲,乙兩部門(mén)的工作情況,隨機(jī)訪問(wèn)了50位市民,根據(jù)這50位市民對(duì)這兩部門(mén)的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越高),繪制莖葉圖如下:
(1)分別估計(jì)該市的市民對(duì)甲,乙兩部門(mén)評(píng)分的中位數(shù);
(2)分別估計(jì)該市的市民對(duì)甲,乙兩部門(mén)的評(píng)分高于90的概率;
(3)根據(jù)莖葉圖分析該市的市民對(duì)甲,乙兩部門(mén)的評(píng)價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象與函數(shù)的圖象關(guān)于軸對(duì)稱,若函數(shù)與函數(shù)在區(qū)間上同時(shí)單調(diào)遞增或同時(shí)單調(diào)遞減,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于實(shí)數(shù)x的一元二次方程.
Ⅰ若a是從區(qū)間中任取的一個(gè)整數(shù),b是從區(qū)間中任取的一個(gè)整數(shù),求上述方程有實(shí)根的概率.
Ⅱ若a是從區(qū)間任取的一個(gè)實(shí)數(shù),b是從區(qū)間任取的一個(gè)實(shí)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過(guò)點(diǎn),其焦點(diǎn)F在x軸上.
求拋物線C的標(biāo)準(zhǔn)方程;
斜率為1且與點(diǎn)F的距離為的直線與x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);
是否存在過(guò)點(diǎn)M的直線l,使l與C交于P、Q兩點(diǎn),且若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】黑板上寫(xiě)有,1,2,…,666,這666個(gè)正整數(shù),第一步劃去最前面的八個(gè)數(shù):1,2,…,8,,并在666后面寫(xiě)上1,2,…,8的和36;第二步再劃去最前面的八個(gè)數(shù):9,10,…,16,并在最后面寫(xiě)上9,10,…,16的和100;如此繼續(xù)下去(即每一步劃去最前面的八個(gè)數(shù),并在最后寫(xiě)上劃去的八個(gè)數(shù)的和).
(1)問(wèn):經(jīng)過(guò)多少步后,黑板上只剩下一個(gè)數(shù)?
(2)當(dāng)黑板上只剩下一個(gè)數(shù)時(shí),求出在黑板上出現(xiàn)過(guò)的所有數(shù)的和(如果一個(gè)數(shù)多次出現(xiàn)需重復(fù)計(jì)算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)集,其中, ,定義向量集.若對(duì)于任意,使得,則稱具有性質(zhì).例如具有性質(zhì).
()若,且具有性質(zhì),求的值.
()若具有性質(zhì),求證: ,且當(dāng)時(shí), .
()若具有性質(zhì),且, (為常數(shù)),求有窮數(shù)列, , , 的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】養(yǎng)路處建造圓錐形倉(cāng)庫(kù)用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉(cāng)庫(kù)的底面直徑為12 m,高為4 m.養(yǎng)路處擬建一個(gè)更大的圓錐形倉(cāng)庫(kù),以存放更多食鹽.現(xiàn)有兩種方案:一是新建的倉(cāng)庫(kù)的底面直徑比原來(lái)大4 m(高不變);二是高度增加4 m(底面直徑不變).
(1)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的體積;
(2)分別計(jì)算按這兩種方案所建的倉(cāng)庫(kù)的表面積(不含底面積);
(3)哪個(gè)方案更經(jīng)濟(jì)些?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com